Jump to ratings and reviews
Rate this book

Introduction to Mathematical Optimization: From Linear Programming to Metaheuristics

Rate this book
This book strives to provide a balanced coverage of efficient algorithms commonly used in solving mathematical optimization problems. It covers both the convectional algorithms and modern heuristic and metaheuristic methods. Topics include gradient-based algorithms such as Newton-Raphson method, steepest descent method, Hooke-Jeeves pattern search, Lagrange multipliers, linear programming, particle swarm optimization (PSO), simulated annealing (SA), and Tabu search. Multiobjective optimization including important concepts such as Pareto optimality and utility method is also described. Three Matlab and Octave programs so as to demonstrate how PSO and SA work are provided. An example of demonstrating how to modify these programs to solve multiobjective optimization problems using recursive method is discussed.

150 pages, Paperback

First published January 1, 2008

10 people want to read

About the author

Xin-She Yang

143 books3 followers

Ratings & Reviews

What do you think?
Rate this book

Friends & Following

Create a free account to discover what your friends think of this book!

Community Reviews

5 stars
1 (33%)
4 stars
2 (66%)
3 stars
0 (0%)
2 stars
0 (0%)
1 star
0 (0%)
No one has reviewed this book yet.

Can't find what you're looking for?

Get help and learn more about the design.