What do you think?
Rate this book


464 pages, Paperback
First published January 1, 1980
“What was in Archimedes' head was different from what was in Newton's head and this, in turn, differed from what was in Gauss's head. It is not just a matter of ‘more,’ that Gauss knew more mathematics than Newton who, in turn, knew more than Archimedes. It is also a matter of ‘different.’ The current state of knowledge is woven into a network of different motivations and aspirations, different interpretations and potentialities.”
“There is work, then, which is wrong, is acknowledged to be wrong and which, at some later date may be set to rights. There is work which is dismissed without examination. There is work which is so obscure that it is difficult to and is perforce ignored. Some of it may emerge later. There is work which may be of great importance such as Cantor's set theory-which is heterodox, and as a result, is ignored or boycotted. There is also work, perhaps the bulk of the mathematical output, which is admittedly correct, but which in the long run is ignored, for lack of or because the main streams of mathematics did not choose to pass that way.”
Para mim, o capítulo mais interessante é o “Realidade matemática” onde a noção de intuição passa por uma crítica que envolve também a psicologia e a filosofia. Essa discussão será importante para situar a matemática em três perspectivas: a platônica ou realista, a formalista e a construtivista. Ao final os autores propõem uma mediação: a matemática é uma invenção (perspectiva formalista), mas isso que criamos guarda mistérios que tentamos descobrir. Ou seja, a matemática é uma realidade objetiva independente da consciência, isto é, que podemos ou não descobrir. A matemática trabalha com raciocínios e argumentos sobre ideias cujos significados podem ser compartilhados. Assim, o social complexifica o que se convencionava reduzir a uma oposição entre matéria e mente.