Jump to ratings and reviews
Rate this book

Arithmetic Groups and Reduction Theory

Rate this book
Arithmetic subgroups of Lie groups are a natural generalization of SL(n,Z) in SL(n,R) and play an important role in the theory of automorphic forms and the theory of moduli spaces in algebraic geometry and number theory through locally symmetric spaces associated with arithmetic subgroups. One key component in the theory of arithmetic subgroups is the reduction theory which started with the work of Gauss on quadratic forms. This book consists of papers and lecture notes of four great contributors of the reduction Armand Borel, Roger Godement, Carl Ludwig Siegel and André Weil. They reflect their deep knowledge of the subject and their perspectives. The lecture notes of Weil are published formally for the first time, and other papers are translated into English for the first time. Therefore, this book will be a very valuable introduction and historical reference for everyone interested in arithmetic subgroups and locally symmetric spaces.

138 pages, Hardcover

Published July 15, 2020

About the author

Armand Borel

41 books3 followers

Ratings & Reviews

What do you think?
Rate this book

Friends & Following

Create a free account to discover what your friends think of this book!

Community Reviews

5 stars
0 (0%)
4 stars
0 (0%)
3 stars
0 (0%)
2 stars
0 (0%)
1 star
0 (0%)
No one has reviewed this book yet.

Can't find what you're looking for?

Get help and learn more about the design.