Topological Methods in Hydrodynamics (Applied Mathematical Sciences) Softcover reprint of edition by Arnold, Vladimir I., Khesin, Boris A. (2013) Paperback
Topological hydrodynamics is a young branch of mathematics studying topological features of flows with complicated trajectories, as well as their applications to fluid motions. It is situated at the crossroad of hyrdodynamical stability theory, Riemannian and symplectic geometry, magnetohydrodynamics, theory of Lie algebras and Lie groups, knot theory, and dynamical systems. Applications of this approach include topological classification of steady fluid flows, descriptions of the Korteweg-de Vries equation as a geodesic flow, and results on Riemannian geometry of diffeomorphism groups, explaining, in particular, why longterm dynamical weather forecasts are not reliable. Topological Methods in Hydrodynamics is the first monograph to treat topological, group-theoretic, and geometric problems of ideal hydrodynamics and magnetohydrodynamics for a unified point of view. The necessary preliminary notions both in hydrodynamics and pure mathematics are described with plenty of examples and figures. The book is accessible to graduate students as well as to both pure and applied mathematicians working in the fields of hydrodynamics, Lie groups, dynamical systems and differential geometry.
Vladimir Igorevich Arnold (alternative spelling Arnol'd, Russian: Влади́мир И́горевич Арно́льд, 12 June 1937 – 3 June 2010)[1] was a Soviet and Russian mathematician. While he is best known for the Kolmogorov–Arnold–Moser theorem regarding the stability of integrable systems, he made important contributions in several areas including dynamical systems theory, catastrophe theory, topology, algebraic geometry, classical mechanics and singularity theory, including posing the ADE classification problem, since his first main result—the partial solution of Hilbert's thirteenth problem in 1957 at the age of 19.