This introductory textbook takes a problem-solving approach to number theory, situating each concept within the framework of an example or a problem for solving. Starting with the essentials, the text covers divisibility, unique factorization, modular arithmetic and the Chinese Remainder Theorem, Diophantine equations, binomial coefficients, Fermat and Mersenne primes and other special numbers, and special sequences. Included are sections on mathematical induction and the pigeonhole principle, as well as a discussion of other number systems. By emphasizing examples and applications the authors motivate and engage readers.
Titu Andreescu is an associate professor of mathematics at the University of Texas at Dallas. He is also firmly involved in mathematics contests and Olympiads, being the Director of AMC (as appointed by the Mathematical Association of America), Director of MOP, Head Coach of the USA IMO Team and Chairman of the USAMO. He has also authored a large number of books on the topic of problem solving and Olympiad-style mathematics.
Despite the introductory 'lessons' at the beginning of the chapters, this is more of a Sudoku compilation of problems than a textbook. So, good selection of exercises, if heterogeneous.