Though James Clerk Maxwell (1831–1879) is best remembered for his epochal achievements in electricity and magnetism, he was wide-ranging in his scientific investigations, and he came to brilliant conclusions in virtually all of them. As James R. Newman put it, Maxwell "combined a profound physical intuition, an exquisite feeling for the relationship of objects, with a formidable mathematical capacity to establish orderly connections among diverse phenomena. This blending of the concrete and the abstract was the chief characteristic of almost all his researches." Maxwell's work on heat and statistical physics has long been recognized as vitally important, but Theory of Heat, his own masterful presentation of his ideas, remained out of print for years before being brought back in this new edition. In this unjustly neglected classic, Maxwell sets forth the fundamentals of thermodynamics clearly and simply enough to be understood by a beginning student, yet with enough subtlety and depth of thought to appeal also to more advanced readers. He goes on to elucidate the fundamental ideas of kinetic theory, and — through the mental experiment of "Maxwell's demon" — points out how the Second Law of Thermodynamics relies on statistics. A new Introduction and notes by Peter Pesic put Maxwell's work into context and show how it relates to the quantum ideas that emerged a few years later. Theory of Heat will serve beginners as a sound introduction to thermal physics; advanced students of physics and the history of science will find Maxwell's ideas stimulating, and will be delighted to discover this inexpensive reprint of a long-unavailable classic.
James Clerk Maxwell FRS FRSE (Mathematics, Trinity College, Cambridge, 1851) was a Scottish mathematical physicist. His most prominent achievement was to formulate a set of equations that describe electricity, magnetism, and optics as manifestations of the same phenomenon, namely the electromagnetic field. Maxwell's achievements concerning electromagnetism have been called the "second great unification in physics", after the first one realised by Isaac Newton.
With the publication of A Dynamical Theory of the Electromagnetic Field in 1865, Maxwell demonstrated that electric and magnetic fields travel through space as waves moving at the speed of light. Maxwell proposed that light is in fact undulations in the same medium that is the cause of electric and magnetic phenomena. The unification of light and electrical phenomena led to the prediction of the existence of radio waves.
Maxwell helped develop the Maxwell–Boltzmann distribution, which is a statistical means of describing aspects of the kinetic theory of gases. He is also known for presenting the first durable colour photograph in 1861 and for his foundational work on analysing the rigidity of rod-and-joint frameworks (trusses) like those in many bridges.
His discoveries helped usher in the era of modern physics, laying the foundation for such fields as special relativity and quantum mechanics. Many physicists regard Maxwell as the 19th-century scientist having the greatest influence on 20th-century physics, and his contributions to the science are considered by many to be of the same magnitude as those of Isaac Newton and Albert Einstein. In the millennium poll—a survey of the 100 most prominent physicists—Maxwell was voted the third greatest physicist of all time, behind only Newton and Einstein. On the centenary of Maxwell's birthday, Einstein himself described Maxwell's work as the "most profound and the most fruitful that physics has experienced since the time of Newton."
An intriguing book but, despite the blurb's claims (blurbs literally always lie) it's quite counterintuitive and difficult to understand Maxwell's early 19th century notation, choice of variable names, and methods of explication. Read it if you want a historical picture of thermodynamics in progress before its development was halted and distorted by the sudden appearance of 20th century physics.