Jump to ratings and reviews
Rate this book

Computational Learning Theory and Natural Learning Systems, Vol. I: Constraints and Prospects

Rate this book
These original contributions converge on an exciting and fruitful intersection of three historically distinct areas of learning computational learning theory, neural networks, and symbolic machine learning. Bridging theory and practice, computer science and psychology, they consider general issues in learning systems that could provide constraints for theory and at the same time interpret theoretical results in the context of experiments with actual learning systems.

In all, nineteen chapters address questions such as, What is a natural system? How should learning systems gain from prior knowledge? If prior knowledge is important, how can we quantify how important? What makes a learning problem hard? How are neural networks and symbolic machine learning approaches similar? Is there a fundamental difference in the kind of task a neural network can easily solve as opposed to those a symbolic algorithm can easily solve?

Stephen J. Hanson heads the Learning Systems Department at Siemens Corporate Research and is a Visiting Member of the Research Staff and Research Collaborator at the Cognitive Science Laboratory at Princeton University. George A. Drastal is Senior Research Scientist at Siemens Corporate Research. Ronald J. Rivest is Professor of Computer Science and Associate Director of the Laboratory for Computer Science at the Massachusetts Institute of Technology.

500 pages, Paperback

First published April 10, 1994

1 person want to read

About the author

Stephen José Hanson

7 books1 follower

Ratings & Reviews

What do you think?
Rate this book

Friends & Following

Create a free account to discover what your friends think of this book!

Community Reviews

5 stars
1 (33%)
4 stars
1 (33%)
3 stars
1 (33%)
2 stars
0 (0%)
1 star
0 (0%)
No one has reviewed this book yet.

Can't find what you're looking for?

Get help and learn more about the design.