Jump to ratings and reviews
Rate this book

London Mathematical Society Lecture Note #248

Tame Topology and O-minimal Structures

Rate this book
Following their introduction in the early 1980s, o-minimal structures have provided an elegant and surprisingly efficient generalization of semialgebraic and subanalytic geometry. This book gives a self-contained treatment of the theory of o-minimal structures from a geometric and topological viewpoint, assuming only rudimentary algebra and analysis. It starts with an introduction and overview of the subject. Later chapters cover the monotonicity theorem, cell decomposition, and the Euler characteristic in the o-minimal setting and show how these notions are easier to handle than in ordinary topology. The remarkable combinatorial property of o-minimal structures, the Vapnik-Chervonenkis property, is also covered. This book should be of interest to model theorists, analytic geometers and topologists.

192 pages, Paperback

First published May 7, 1998

10 people want to read

About the author

L.P.D. Van Den Dries

1 book11 followers

Ratings & Reviews

What do you think?
Rate this book

Friends & Following

Create a free account to discover what your friends think of this book!

Community Reviews

5 stars
1 (20%)
4 stars
3 (60%)
3 stars
1 (20%)
2 stars
0 (0%)
1 star
0 (0%)
No one has reviewed this book yet.

Can't find what you're looking for?

Get help and learn more about the design.