"Anyone interested in getting an introduction to Ramsey theory will find this illuminating..."--"MAA Reviews"
Covering all the major concepts, proofs, and theorems, the "Second Edition" of "Ramsey Theory" is the ultimate guide to understanding every aspect of Shelah's proof, as well as the original proof of van der Waerden. The book offers a historical perspective of Ramsey's fundamental paper from 1930 and Erdos' and Szekeres' article from 1935, while placing the various theorems in the context of T. S. Motzkin's thought on the subject of "Complete Disorder is Impossible."
"Ramsey Theory, Second Edition" includes new and exciting coverage of Graph Ramsey Theory and Euclidean Ramsey Theory and also relates Ramsey Theory to other areas in discrete mathematics. In addition, the book features the unprovability results of Paris and Harrington and the methods from topological dynamics pioneered by Furstenburg.
Featuring worked proofs and outside applications, "Ramsey Theory, Second Edition" addresses: Ramsey and density theorems on both broad and meticulous scalesExtentions and implications of van der Waerden's Theorem, the Hales-Jewett Theorem, Roth's Theorem, Rado's Theorem, Szemeredi's Theorem, and the Shelah ProofRegular homogeneous and nonhomogeneous systems and equationsSpecial cases and broader interdisciplinary applications of Ramsey Theory principles
An invaluable reference for professional mathematicians working in discrete mathematics, combinatorics, and algorithms, "Ramsey Theory, Second Edition" is the definitive work on the subject.
I've only had time to read a few snippets here and there, but this is a fantastically interesting book that I don't know when I'll have time to really dig into.