Jump to ratings and reviews
Rate this book

Missing Data

Rate this book
Sooner or later anyone who does statistical analysis runs into problems with missing data in which information for some variables is missing for some cases. Why is this a problem? Because most statistical methods presume that every case has information on all the variables to be included in the analysis. Using numerous examples and practical tips, this book offers a nontechnical explanation of the standard methods for missing data (such as listwise or casewise deletion) as well as two newer (and, better) methods, maximum likelihood and multiple imputation. Anyone who has been relying on ad-hoc methods that are statistically inefficient or biased will find this book a welcome and accessible solution to their problems with handling missing data. 

106 pages, Kindle Edition

First published August 13, 2001

3 people are currently reading
29 people want to read

About the author

Paul D. Allison

19 books1 follower

Ratings & Reviews

What do you think?
Rate this book

Friends & Following

Create a free account to discover what your friends think of this book!

Community Reviews

5 stars
7 (26%)
4 stars
11 (42%)
3 stars
6 (23%)
2 stars
2 (7%)
1 star
0 (0%)
Displaying 1 of 1 review
Displaying 1 of 1 review

Can't find what you're looking for?

Get help and learn more about the design.