Jump to ratings and reviews
Rate this book

Viability study of different reverse osmosis membranes for application in the tertiary treatment of wastes from the tanning industry [An article from: Desalination]

Rate this book
This digital document is a journal article from Desalination, published by Elsevier in . The article is delivered in HTML format and is available in your Amazon.com Media Library immediately after purchase. You can view it with any web browser.


The tanning industry uses large quantities of water and produces a correspondingly large amount of wastewater with high levels of salts and organic materials. Before these wastewaters can be eliminated, they must be submitted to a suitable depuration treatment. However, conventional treatments such as those used for urban wastewater are not able to reduce the salt content sufficiently and new methods need to be studied in the light of new technologies. In this aspect, membrane technology is increasingly used as a separation technique in chemical and environmental engineering, including desalination, selective separation and wastewater treatment. In this paper, we describe a comparative study of six different reverse osmosis membranes, which were tested for their ability to reduce the salt content in the tertiary treatment after the elimination of chromium salts and organic matter of an effluent from a pilot plant for treating industrial wastewater from the tanning industry to reach the legal levels established for their safe disposal. The membranes were checked using a 3x10^-^3 m^2 flat cell, where the concentrated streams were recirculated to the feed reservoir.

ebook

About the author

A. Bodalo

2 books

Ratings & Reviews

What do you think?
Rate this book

Friends & Following

Create a free account to discover what your friends think of this book!

Community Reviews

5 stars
0 (0%)
4 stars
0 (0%)
3 stars
0 (0%)
2 stars
0 (0%)
1 star
0 (0%)
No one has reviewed this book yet.

Can't find what you're looking for?

Get help and learn more about the design.