Although we seldom think of it, our lives are played out in a world of numbers. Such common activities as throwing baseballs, skipping rope, growing flowers, playing football, measuring savings accounts, and many others are inherently mathematical. So are more speculative problems that are simply fun to ponder in themselves--such as the best way to score Olympic events. Here Robert Banks presents a wide range of musings, both practical and entertaining, that have intrigued him and How tall can one grow? Why do we get stuck in traffic? Which football player would have a better chance of breaking away--a small, speedy wide receiver or a huge, slow linebacker? Can California water shortages be alleviated by towing icebergs from Antarctica? What is the fastest the 100-meter dash will ever be run? The book's twenty-four concise chapters, each centered on a real-world phenomenon, are presented in an informal and engaging manner. Banks shows how math and simple reasoning together may produce elegant models that explain everything from the federal debt to the proper technique for ski-jumping. This book, which requires of its readers only a basic understanding of high school or college math, is for anyone fascinated by the workings of mathematics in our everyday lives, as well as its applications to what may be imagined. All will be rewarded with a myriad of interesting problems and the know-how to solve them.Some images inside the book are unavailable due to digital copyright restrictions.
There are several books about recreational mathematics (puzzles) and a smaller number on the history of mathematics. This book and its sequel are the only two popularizations of applied mathematics I have come across. The author takes what might start as a simple question (moving something from a to b) and adds in complexities to get a more realistic problem (towing an iceberg from a to b, including the effects of friction and melting). As you can imagine, few of the equations look much like "rate x time = distance", but I found the glimpses of how applied mathematics really look to be fascinating.
Note: unlike in most science popularizations, this author is not afraid of calculus. It might be rough going in parts if you aren't familiar with the notation.
Una precisazione fondamentale. Questo non è un libro di matematica ricreativa. Avrei anche qualche dubbio a definirlo un libro di divulgazione matematica. Lo è nel senso che dimostra come la si può usare per calcolare cosa succede nelle circostanze che possono o no capitare nella vita di tutti i giorni: perché un bravo golfista riesce a colpire una pallina e farla inizialmente salire con una parabola diretta verso l'alto, o cosa bisognerebbe fare per portare degli iceberg fino a San Francisco per aumentare la dotazione d'acqua potabile. Però il libro è più che altro una specie di testo ausiliario per un corso universitario: gli esempi portano sempre ("naturalmente"...) a equazioni differenziali se non addirittura integro-differenziali che non sono certo alla portata di tutti. Insomma, i casi sono due: o vi mettete a rifare tutti i conti e svolgere gli esercizi, oppure fate come me e gli date solo una scorsa fidandovi dei risultati e imparando parecchie curiosità.