Jump to ratings and reviews
Rate this book

Graduate Texts in Mathematics #50

Fermat's Last Theorem: A Genetic Introduction to Algebraic Number Theory

Rate this book
This introduction to algebraic number theory via the famous problem of "Fermats Last Theorem" follows its historical development, beginning with the work of Fermat and ending with Kummers theory of "ideal" factorization. The more elementary topics, such as Eulers proof of the impossibilty of x+y=z, are treated in an uncomplicated way, and new concepts and techniques are introduced only after having been motivated by specific problems. The book also covers in detail the application of Kummers theory to quadratic integers and relates this to Gauss'theory of binary quadratic forms, an interesting and important connection that is not explored in any other book.

422 pages, Paperback

First published January 1, 1980

2 people are currently reading
76 people want to read

About the author

Harold M. Edwards

19 books7 followers

Ratings & Reviews

What do you think?
Rate this book

Friends & Following

Create a free account to discover what your friends think of this book!

Community Reviews

5 stars
1 (11%)
4 stars
7 (77%)
3 stars
1 (11%)
2 stars
0 (0%)
1 star
0 (0%)
No one has reviewed this book yet.

Can't find what you're looking for?

Get help and learn more about the design.