Jump to ratings and reviews
Rate this book

Solvable Models in Quantum Mechanics

Rate this book
Next to the harmonic oscillator and the Coulomb potential the class of two-body models with point interactions is the only one where complete solutions are available. All mathematical and physical quantities can be calculated explicitly which makes this field of research important also for more complicated and realistic models in quantum mechanics. The detailed results allow their implementation in numerical codes to analyse properties of alloys, impurities, crystals and other features in solid state quantum physics. This monograph presents in a systematic way the mathematical approach and unifies results obtained in recent years. The student with a sound background in mathematics will get a deeper understanding of Schrödinger Operators and will see many examples which may eventually be used with profit in courses on quantum mechanics and solid state physics. The book has textbook potential in mathematical physics and is suitable for additional reading in various fields of theoretical quantum physics.

466 pages, Paperback

First published January 1, 1988

1 person want to read

About the author

Sergio Albeverio (born 17 January 1939) is a Swiss mathematician and mathematical physicist working in numerous fields of mathematics and its applications. In particular he is known for his work in probability theory, analysis (including infinite dimensional, non-standard, and stochastic analysis), mathematical physics, and in the areas algebra, geometry, number theory, as well as in applications, from natural to social-economic sciences.

He initiated (with Raphael Høegh-Krohn) a systematic mathematical theory of Feynman path integrals and of infinite dimensional Dirichlet forms and associated stochastic processes (with applications particularly in quantum mechanics, statistical mechanics and quantum field theory). He also gave essential contributions to the development of areas such as p-adic functional and stochastic analysis as well as to the singular perturbation theory for differential operators. Other important contributions concern constructive quantum field theory and representation theory of infinite dimensional groups. He also initiated a new approach to the study of galaxy and planets formation inspired by stochastic mechanics.

Ratings & Reviews

What do you think?
Rate this book

Friends & Following

Create a free account to discover what your friends think of this book!

Community Reviews

5 stars
0 (0%)
4 stars
2 (66%)
3 stars
1 (33%)
2 stars
0 (0%)
1 star
0 (0%)
No one has reviewed this book yet.

Can't find what you're looking for?

Get help and learn more about the design.