AN INTERESTING HISTORY OF PARTICLE PHYSICS
Steven Weinberg (born 1933) is a Nobel Prize-winner in Physics for his contributions to the unification of the weak force and electromagnetic interaction between elementary particles. He has also written books such as 'The First Three Minutes: A Modern View Of The Origin Of The Universe,' 'Cosmology,' 'Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity,' etc.
He wrote in the Preface to this 1983 book, “This book grew out of a course that I gave at Harvard in the spring of 1980… The idea of the course, in brief, was to engage students who were not assumed to have any prior training in mathematics or physics in learning about the great achievements of twentieth-century physics… The book covers the discovery of the fundamental particles that make up all ordinary atoms: the electron, the proton, and the neutron. The general outline is historical, but it is history with one significant difference… This book is written for readers who may not be familiar with classical physics, but who are willing to pick up enough to fit as they go along to be able to understand the rich tangle of ideas and experiments that make up the history of twentieth century physics… flashback sections and the background material interspersed in other sections represent my secret motivation in writing this book.” (Pg. x-xi)
He continues, “My hope… is that this book may contribute to a radical revision in the way that science if brought to nonscientists… This book is intended to be comprehensible to readers who have no prior background in science, and no familiarity with mathematics beyond arithmetic… Although this book is written for the nonscientist, it has one aspect that perhaps also my fellow physicists may find interesting. The great scientific achievements described here form a large part of the soil from which our own more recent harvest of discoveries have sprung. Yet I, for one, had only toe foggiest idea of the early history of twentieth-century physics when I started to teach the courses at Harvard and Texas, and I suspect that the same is true of many of my colleagues in physics. I hope that scientists may find some of the history… in the book enlightening.” (Pg. xii)
He explains, “All ordinary matter is composed of atoms, which in turn consist of protons, neutrons, and electrons… The electron is just one member of a family of particles called leptons, of which some half dozen are now known. The proton and the neutron are members of much larger family of particles called hadrons, of which hundreds are known… Electrons are believed to be absolutely stable, and protons and neutrons (when bound in an atomic nucleus) live at least [10 to the 30th power] years. With a few exceptions, all other particles have very short lifetimes, and are therefore very rare in the present universe… The proton, the neutron, and the other hadrons are … composites themselves, made up of … quarks. As far as is known, the electron and the members of the lepton family are truly elementary.” (Pg. 4)
He notes, “Atoms are electrically neutral, but the electrons discovered by Thomson carry a negative electric charge. If atoms contain electrons, then they must also contain some other material that carries a positive charge to cancel the electrons’ negative charge. The great task after the discovery of the electron was to identify this positive material and to describe how it and the electrons are arranged within the atom.” (Pg. 104)
He recounts, “during the exciting period in the 1920s when quantum mechanics was being developed, a colleague asked, ‘How is physics these days, [Ernest] Rutherford?’ and Rutherford replied, ‘…the theorists are on their hind legs and it is up to us to get them down again.’ As a theorist I naturally tend to deplore this sort of antitheoretical feeling. Bu tin fact theorists and experimentalists generally get along pretty well with each other, and could hardly get along at all without each other. Rutherford’s attitude may have been partly due to the face that his greatest work was done during a time when so little was known about the nucleus that elaborate mathematical theorizing would have been out of place, and whatever theory was called for, Rutherford was quite capable of supplying himself.” (Pg. 108-109)
He concludes, “I hope that the reader will not conclude from the account or particle physics I have given here that this branch of physics has degenerated into a kind of butterfly collecting, with the peculiarity that the butterflies we collect do not live long enough to be found in nature and have to be created in the laboratory of the collector. I think that this view is quite wrong. Once the age-old question of the nature of ordinary matter was settled… the question shifted. The real task we address … is not to develop a list of particles and their properties. It is to understand the underlying principles that dictate why nature… is the way it is. All our experience shows that the study of elementary particles is at present the best and perhaps the only way of getting at the fundamental laws of nature.” (Pg. 168)
Weinberg presents an engaging history, rather than just a dry recounting of facts. This book will be of great interest to those studying the history of particle physics.