This short handbook is a practical and accessible guide to the statistical design and analysis of 2-level, multi-factor experiments of the kind widely used in industry and business. Written for technologists and researchers, it forgoes the usual heavy statistical overlay of typical texts on this subject by focusing on a limited catalog of standard designs that are useful for commonly encountered problems. These design choices are based on relatively recent developments in design projectivity , and their analysis requires nothing more than simple plots of the neither special expertise nor complex software is needed. Numerous examples show how to carry out this program in practice. Even though the statistical content of the handbook has been deliberately limited, it nevertheless discusses several practical matters that are rarely included in more comprehensive treatments, but which are vital for experimental success. Among these are the realities of randomization versus split-plotting, the importance of identifying the experimental unit, and a discussion of replication that argues that it is generally not worth the effort. Readers with some prior statistical exposure -- and statisticians -- may also be surprised to find that p-values do not appear anywhere in the book, and that in fact the authors explicitly argue against their use. Those new to the ideas of Statistical Design of Experiments (DOE)-- or even those who have some familiarity but would like greater insight and simplicity -- should find this handbook an effective way to learn about and apply this powerful technology in their own work.
Ho acquistato questo libretto per non arrivare completamente digiuno di conoscenze al corso aziendale sul Design of Experiments (DOE). Tra i vari testi a disposizione ho scelto questo perché si presentava come un'introduzione snella e orientata alla pratica ed effettivamente non mi ha deluso. Gli autori evitano programmaticamente e dichiaratamente qualsiasi approfondimento teorico di tipo statistico, pur utilizzando i risultati necessari per applicare questo metodo a svariati casi pratici che si possono incontrare in ambito industriale. La presentazione avviene mediante esempi significativi disposti a illustrare i vari aspetti di questo metodo, passando da casi semplici (quasi scolastici) a casi piú complessi (reali o realistici), avendo molta cura nel commentare in modo puntuale tutte le fasi di applicazione del DOE. Come tipicamente accade per i manuali tecnici, il testo si legge scorrevolmente per chiunque abbia una conoscenza dell'inglese da scuola media superiore. In conclusione, non posso che consigliarlo a chiunque voglia avvicinarsi per la prima volta a questo metodo di pianificazione delle prove in ambito industriale o laboratoriale.
Pretty good introduction for those who are scared of math. Even for those who are not, it's probably the first book one should read on DOE to get the bird's eye view, before getting into more complex details and formulas in longer books.