Jump to ratings and reviews
Rate this book

Representation of Lie Groups and Special Functions

Representation of Lie Groups and Special Functions: Volume 1: Simplest Lie Groups, Special Functions and Integral Transforms

Rate this book
Series Editor's Preface. Preface. List of Special Symbols. 0: Introduction. 1: Elements of the Theory of Lie Groups and Lie Algebras. 2: Group Representations and Harmonic Analysis on Groups. 3: Commutative Groups and Elementary Functions. The Group of Linear Transformations of the Straight Line and the Gamma-Function. Hypergeometric Functions. 4: Representations of the Groups of Motions of Euclidean and Pseudo-Euclidean Planes, and Cylindrical Functions. 5: Representations of Groups of Third Order Triangular Matrices, the Confluent Hypergeometric Function and Related Polynomials and Functions. 6: Representations of the Groups SU (2), SU (1,1) and Related Special Legendre, Jacobi, Chebyshev Polynomials and Functions, Gegenbauer, Krawtchouk, Meixner Polynomials. 7: Representations of the Groups SU (1,1) and SL (2, R) in Mixed Bases. The Hypergeometric Function. 8: Clebsch-Gordan Coefficients, Racah Coefficients, and Special Functions. Bibliography. Subject Index.

640 pages, Paperback

First published November 30, 1991

4 people want to read

About the author

Naum Yakovlevich Vilenkin

66 books2 followers
Naum Yakovlevich Vilenkin (Russian: Наум Яковлевич Виленкин, October 30, 1920 in Moscow – October 19, 1991 in Moscow) was a Soviet mathematician, an expert in representation theory, the theory of special functions, functional analysis, and combinatorics. He is best known as the author of many books in recreational mathematics aimed at middle and high school students.

Ratings & Reviews

What do you think?
Rate this book

Friends & Following

Create a free account to discover what your friends think of this book!

Community Reviews

5 stars
0 (0%)
4 stars
0 (0%)
3 stars
0 (0%)
2 stars
0 (0%)
1 star
0 (0%)
Displaying 1 - 2 of 2 reviews
14 reviews
Want to read
October 22, 2023
En 3.4 aparece el grupo de transformaciones (traslaciones y dilataciones) con su respectiva representación de operadores


Se menciona el grupo de transformaciones de la recta real, el "ax+b". Cada elemento del grupo es denotado por g(a,b) (dos parámetros)
y este grupo es el producto directo entre dos subgrupos de elementos de la forma g(a,0) y g(1,b) respectivamente.
Después, con una representación, es posible obtener los generadores infinitesimales de esta representación como operadores
los cuales son: el operador de producto con diferenciación x\partial_x y el operador multiplicación x. La forma de encontrar estos generadores
consiste en derivar la representación en la variable temporal t y luego evaluar en t=0. Esto se fundamenta
con la Proposición 4.4 en Brian Hall (el apartado de teoría de representaciones=
150 reviews
Want to read
February 26, 2024
2.1.5 representations of lie algebras and of universal enveloping algebras
example 1. (T(g))f(x)=f(x-t), the group is R in L^2(R). The infinitesimal operator has the form T(X)=-d/dx.


En 3.4 aparece el grupo de transformaciones (traslaciones y dilataciones) con su respectiva representación de operadores

Se menciona el grupo de transformaciones de la recta real, el "ax+b". Cada elemento del grupo es denotado por g(a,b) (dos parámetros)
y este grupo es el producto directo entre dos subgrupos de elementos de la forma g(a,0) y g(1,b) respectivamente.
Después, con una representación, es posible obtener los generadores infinitesimales de esta representación como operadores
los cuales son: el operador de producto con diferenciación x\partial_x y el operador multiplicación x. La forma de encontrar estos generadores
consiste en derivar la representación en la variable temporal t y luego evaluar en t=0. Esto se fundamenta
con la Proposición 4.4 en Brian Hall (el apartado de teoría de representaciones) (creo que esto no aplica, al ser de dimension infinita)

3.3 Fourier transform in the Complex domain. Mellin and Laplace transform.

Definition of Laplace transform.
Inverse Laplace transform.

3.3.3 Transformation of square-integrable functions. (Theorem 1-3 are useful)
Displaying 1 - 2 of 2 reviews

Can't find what you're looking for?

Get help and learn more about the design.