This is the first of three major volumes which present a comprehensive treatment of the theory of the main classes of special functions from the point of view of the theory of group representations. This volume deals with the properties of classical orthogonal polynomials and special functions which are related to representations of groups of matrices of second order and of groups of triangular matrices of third order. This material forms the basis of many results concerning classical special functions such as Bessel, MacDonald, Hankel, Whittaker, hypergeometric, and confluent hypergeometric functions, and different classes of orthogonal polynomials, including those having a discrete variable. Many new results are given. The volume is self-contained, since an introductory section presents basic required material from algebra, topology, functional analysis and group theory. For research mathematicians, physicists and engineers.
Naum Yakovlevich Vilenkin (Russian: Наум Яковлевич Виленкин, October 30, 1920 in Moscow – October 19, 1991 in Moscow) was a Soviet mathematician, an expert in representation theory, the theory of special functions, functional analysis, and combinatorics. He is best known as the author of many books in recreational mathematics aimed at middle and high school students.
En 3.4 aparece el grupo de transformaciones (traslaciones y dilataciones) con su respectiva representación de operadores
Se menciona el grupo de transformaciones de la recta real, el "ax+b". Cada elemento del grupo es denotado por g(a,b) (dos parámetros) y este grupo es el producto directo entre dos subgrupos de elementos de la forma g(a,0) y g(1,b) respectivamente. Después, con una representación, es posible obtener los generadores infinitesimales de esta representación como operadores los cuales son: el operador de producto con diferenciación x\partial_x y el operador multiplicación x. La forma de encontrar estos generadores consiste en derivar la representación en la variable temporal t y luego evaluar en t=0. Esto se fundamenta con la Proposición 4.4 en Brian Hall (el apartado de teoría de representaciones=
2.1.5 representations of lie algebras and of universal enveloping algebras example 1. (T(g))f(x)=f(x-t), the group is R in L^2(R). The infinitesimal operator has the form T(X)=-d/dx.
En 3.4 aparece el grupo de transformaciones (traslaciones y dilataciones) con su respectiva representación de operadores
Se menciona el grupo de transformaciones de la recta real, el "ax+b". Cada elemento del grupo es denotado por g(a,b) (dos parámetros) y este grupo es el producto directo entre dos subgrupos de elementos de la forma g(a,0) y g(1,b) respectivamente. Después, con una representación, es posible obtener los generadores infinitesimales de esta representación como operadores los cuales son: el operador de producto con diferenciación x\partial_x y el operador multiplicación x. La forma de encontrar estos generadores consiste en derivar la representación en la variable temporal t y luego evaluar en t=0. Esto se fundamenta con la Proposición 4.4 en Brian Hall (el apartado de teoría de representaciones) (creo que esto no aplica, al ser de dimension infinita)
3.3 Fourier transform in the Complex domain. Mellin and Laplace transform.
Definition of Laplace transform. Inverse Laplace transform.
3.3.3 Transformation of square-integrable functions. (Theorem 1-3 are useful)