Jump to ratings and reviews
Rate this book

Natural Language Processing with Transformers (Revised Edition): Building Language Applications with Hugging Face

Rate this book
Since their introduction in 2017, transformers have quickly become the dominant architecture for achieving state-of-the-art results on a variety of natural language processing tasks. If you're a data scientist or coder, this practical book shows you how to train and scale these large models using Hugging Face Transformers, a Python-based deep learning library.

Transformers have been used to write realistic news stories, improve Google Search queries, and even create chatbots that tell corny jokes. In this guide, Lewis Tunstall, Leandro von Werra, and Thomas Wolf use a hands-on approach to teach you how transformers work and how to integrate them in your applications. You'll quickly learn a variety of tasks they can help you solve.

● Build, debug, and optimize transformer models for core NLP tasks, such as text classification, named entity recognition, and question answering

● Learn how transformers can be used for cross-lingual transfer learning

● Apply transformers in real-world scenarios where labeled data is scarce

● Make transformer models efficient for deployment

● Train transformers from scratch and learn how to scale to multiple GPUs and distributed environments

PLEASE When you purchase this title, the accompanying PDF will be available in your Audible Library along with the audio.

Audible Audio

Published July 15, 2025

1 person want to read

About the author

Lewis Tunstall

2 books6 followers

Ratings & Reviews

What do you think?
Rate this book

Friends & Following

Create a free account to discover what your friends think of this book!

Community Reviews

5 stars
0 (0%)
4 stars
0 (0%)
3 stars
0 (0%)
2 stars
0 (0%)
1 star
0 (0%)
No one has reviewed this book yet.

Can't find what you're looking for?

Get help and learn more about the design.