Jump to ratings and reviews
Rate this book

MATHEMATICS OF HARMONY: FROM EUCLID TO CONTEMPORARY MATHEMATICS AND COMPUTER SCIENCE

Rate this book
Assisted by Scott Olsen (Central Florida Community College, USA)
This volume is a result of the author's four decades of research in the field of Fibonacci numbers and the Golden Section and their applications. It provides a broad introduction to the fascinating and beautiful subject of the "Mathematics of Harmony," a new interdisciplinary direction of modern science. This direction has its origins in "The Elements" of Euclid and has many unexpected applications in contemporary mathematics (a new approach to a history of mathematics, the generalized Fibonacci numbers and the generalized golden proportions, the "golden" algebraic equations, the generalized Binet formulas, Fibonacci and "golden" matrices), theoretical physics (new hyperbolic models of Nature) and computer science (algorithmic measurement theory, number systems with irrational radices, Fibonacci computers, ternary mirror-symmetrical arithmetic, a new theory of coding and cryptography based on the Fibonacci and "golden" matrices).
The book is intended for a wide audience including mathematics teachers of high schools, students of colleges and universities and scientists in the field of mathematics, theoretical physics and computer science. The book may be used as an advanced textbook by graduate students and even ambitious undergraduates in mathematics and computer science.
Researchers, teachers and students in mathematics (especially those interested in the Golden Section and Fibonacci numbers), theoretical physics and computer science.

748 pages, Hardcover

First published December 30, 2008

1 person is currently reading
12 people want to read

About the author

Ratings & Reviews

What do you think?
Rate this book

Friends & Following

Create a free account to discover what your friends think of this book!

Community Reviews

5 stars
3 (50%)
4 stars
1 (16%)
3 stars
2 (33%)
2 stars
0 (0%)
1 star
0 (0%)
Displaying 1 of 1 review
Displaying 1 of 1 review

Can't find what you're looking for?

Get help and learn more about the design.