Jump to ratings and reviews
Rate this book

Accelerating Discovery: Mining Unstructured Information for Hypothesis Generation

Rate this book
Unstructured Mining Approaches to Solve Complex Scientific Problems As the volume of scientific data and literature increases exponentially, scientists need more powerful tools and methods to process and synthesize information and to formulate new hypotheses that are most likely to be both true and important. Accelerating Mining Unstructured Information for Hypothesis Generation describes a novel approach to scientific research that uses unstructured data analysis as a generative tool for new hypotheses. The author develops a systematic process for leveraging heterogeneous structured and unstructured data sources, data mining, and computational architectures to make the discovery process faster and more effective. This process accelerates human creativity by allowing scientists and inventors to more readily analyze and comprehend the space of possibilities, compare alternatives, and discover entirely new approaches. Encompassing systematic and practical perspectives, the book provides the necessary motivation and strategies as well as a heterogeneous set of comprehensive, illustrative examples. It reveals the importance of heterogeneous data analytics in aiding scientific discoveries and furthers data science as a discipline.

270 pages, Hardcover

First published October 1, 2015

1 person is currently reading
5 people want to read

About the author

Ratings & Reviews

What do you think?
Rate this book

Friends & Following

Create a free account to discover what your friends think of this book!

Community Reviews

5 stars
0 (0%)
4 stars
0 (0%)
3 stars
0 (0%)
2 stars
0 (0%)
1 star
0 (0%)
No one has reviewed this book yet.

Can't find what you're looking for?

Get help and learn more about the design.