Книга представляет собой одно из лучших и исторически одно из первых популярных произведений по математике, написанных крупными математиками.
В книге содержится, действительно, очень наглядный, но достаточно строгий рассказ о геометрических науках и теориях, в частности о геометрической кристаллографии, о геометрической сущности кинематики и о топологии.
David Hilbert (23 January 1862 – 14 February 1943) was a German mathematician and one of the most influential mathematicians of the 19th and early 20th centuries. Hilbert discovered and developed a broad range of fundamental ideas in many areas, including invariant theory, the calculus of variations, commutative algebra, algebraic number theory, the foundations of geometry, spectral theory of operators and its application to integral equations, mathematical physics, and the foundations of mathematics (particularly proof theory).
Hilbert adopted and defended Georg Cantor's set theory and transfinite numbers. In 1900, he presented a collection of problems that set the course for much of the mathematical research of the 20th century.
Hilbert and his students contributed significantly to establishing rigor and developed important tools used in modern mathematical physics. Hilbert is known as one of the founders of proof theory and mathematical logic.
One of the best mathematics books ever written. If it weren't reasonably difficult I would have selected it as my "should be in every high school" book. Still a strong 5/5, bordering on 6/5.
If you want to know what mathematics is, and if you're willing to work hard, read this.
We are in 1932, Hilbert is playing with geometry. You are about to understand why quantum mechanics books say that everything is happening at Hilbert’s space. Oras, seems that Hilbert dared to define all possible spaces. Was he a boundless thinker? In this book, he always starts with the simplest forms to end-up discussing how many x-order things there are. Using infinity power to some x to illustrate the algebraic nature of figures. Many figures. As a result, he will stretch your imagination to infinity and beyond (?).
513.8 HIL Ref:The Process of Education by Bruner, Jerome S David Hilbert, a German mathematician recognized as one of the most influential and universal mathematicians of the 19th and early 20th centuries
Quotes: We must know. We will know. David Hilbert liked to quote "an old French mathematician" saying "A mathematical theory should not be considered complete until you have made it so clear that you can explain it to the first man you meet on the street".
Review as not a academic approach to introduce math. Should be a good to self-reading book.
Yesterday, I learned what an oblate spheroid is. Also a prolate spheroid (which I hadn't heard of before.) If you rotate an ellipse on its major (longer) axis you get a prolate spheroid (which looks like an egg). If you rotate an ellipse on its minor (shorter) axis you get an oblate spheroid (which looks like an onion).
A magnificent and beautiful book. I recommend reading it to anyone wishing to get more deeply involved with geometry. Especially the introduction to topology from a geometrical point of view is a great motivation for the rather abstract approach that is commonly taught nowadays.
Dieses Buch präsentiert eine Reihe von geometrischen Themen und Konzepten auf eine intuitive und anschauliche Weise. Hilbert und Cohn-Vossen zeigen die Schönheit und Eleganz der Geometrie durch zahlreiche Beispiele und Illustrationen. Sie decken sowohl klassische als auch moderne geometrische Probleme ab und betonen die Bedeutung der räumlichen Vorstellungskraft und der Visualisierung in der Mathematik.
Ein zentrales Thema ist die Darstellung geometrischer Objekte und Transformationen, die den Lesern ein tieferes Verständnis für die Struktur und Eigenschaften der Geometrie vermittelt. Das Buch richtet sich sowohl an Mathematiker als auch an Laien, die an den ästhetischen und theoretischen Aspekten der Geometrie interessiert sind.