Jump to ratings and reviews
Rate this book

MM Optimization Algorithms

Rate this book
MM Optimization Algorithms offers an overview of the MM principle, a device for deriving optimization algorithms satisfying the ascent or descent property. These algorithms can separate the variables of a problem, avoid large matrix inversions, linearize a problem, restore symmetry, deal with equality and inequality constraints gracefully, and turn a nondifferentiable problem into a smooth problem. The author presents the first extended treatment of MM algorithms, which are ideal for high-dimensional optimization problems in data mining, imaging, and genomics; derives numerous algorithms from a broad diversity of application areas, with a particular emphasis on statistics, biology, and data mining; and summarizes a large amount of literature that has not reached book form before. This book is intended for those interested in high-dimensional optimization. Background material on convexity and semidifferentiable functions is derived in a setting congenial to graduate students. Chapter 1: Beginning Examples; Chapter 2: Convexity and Inequalities; Chapter 3: Nonsmooth Analysis; Chapter 4: Majorization and Minorization; Chapter 5: Proximal Algorithms; Chapter 6: Regression and Multivariate Analysis; Chapter 7: Convergence and Acceleration; Appendix Mathematical Background.

233 pages, Hardcover

Published July 11, 2016

1 person want to read

About the author

Kenneth Lange

26 books1 follower

Ratings & Reviews

What do you think?
Rate this book

Friends & Following

Create a free account to discover what your friends think of this book!

Community Reviews

5 stars
0 (0%)
4 stars
0 (0%)
3 stars
0 (0%)
2 stars
0 (0%)
1 star
0 (0%)
No one has reviewed this book yet.

Can't find what you're looking for?

Get help and learn more about the design.