Jump to ratings and reviews
Rate this book

Data Strategy: How to Profit from a World of Big Data, Analytics and the Internet of Things

Rate this book
Less than 0.5 per cent of all data is currently analysed and used. However, business leaders and managers cannot afford to be unconcerned or sceptical about data. Data is revolutionizing the way we work and it is the companies that view data as a strategic asset that will survive and thrive. Bernard Marr's Data Strategy is a must-have guide to creating a robust data strategy. Explaining how to identify your strategic data needs, what methods to use to collect the data and, most importantly, how to translate your data into organizational insights for improved business decision-making and performance, this is essential reading for anyone aiming to leverage the value of their business data and gain competitive advantage.

Packed with case studies and real-world examples, advice on how to build data competencies in an organization and crucial coverage of how to ensure your data doesn't become a liability, Data Strategy will equip any organization with the tools and strategies it needs to profit from big data, analytics and the Internet of Things.

200 pages, Paperback

Published April 25, 2017

239 people are currently reading
1067 people want to read

About the author

Bernard Marr

64 books122 followers
Best-Selling Author, Keynote Speaker and Leading Business and Data Expert

Ratings & Reviews

What do you think?
Rate this book

Friends & Following

Create a free account to discover what your friends think of this book!

Community Reviews

5 stars
104 (25%)
4 stars
154 (37%)
3 stars
117 (28%)
2 stars
26 (6%)
1 star
9 (2%)
Displaying 1 - 30 of 37 reviews
Profile Image for Emre Sevinç.
177 reviews434 followers
April 9, 2018
This can be considered a good introductory and light reading for any business person who is trying to make sense of the recent increase in mentioning of topics such as "data-driven culture", "big data", "data-drive decision making", "data literacy", "data-driven company", and such.

It gives a good overview, and can be mildly helpful for people who are trying to form a data strategy for their business, but one should not expect much from this book, because its structure is mostly like "here's what big company / my customer did with Y and Z type of data, and won big" repeated again and again in different business domains. Your company will of course fall into one of the mentioned business domains, but this doesn't automatically mean you can replicate a similar success. Nevertheless, the examples can be considered a good starting point to think about your particular use case.

For technically oriented people, there isn't much to learn about technology, except maybe a few mini case studies from some sectors and how the author manages to communicate the business value of these without frightening business people with technical and complex jargon.

Finally, I appreciated author's tackling the dark side of data: how companies should be careful with governance and privacy issues and why it doesn't make sense anymore to follow the worn out mantra of "let's store everything, we'll figure out later how to get value of that huge data set". This concern will be more and more important in the upcoming days, so whether you're the technical person implementing data related projects, or the business person responsible for the higher level data strategy, it'll be in your interest to take that part of the book seriously.

I also have to admit that, as a very technically oriented person who can easily dive into technological details, I found the book helpful to remind me how I can force my mind to look at things more from the business and high level perspective (and therefore I'll refrain from criticizing some of its inaccuracies when it comes technological points :) .
Profile Image for Toàn Khôi.
132 reviews21 followers
January 24, 2019
Dữ liệu đang thay đổi cách chúng ta sống và làm việc với tốc độ chưa từng có. Dữ liệu được thu thập từ tất cả “dấu vết” ta để lại khi lướt web, mua hàng qua thẻ tín dụng, gửi e-mail, chụp ảnh, đọc báo trực tuyến, thậm chí dạo phố khi mang theo điện thoại di động hoặc đi trong khu vực có hệ thống camera giám sát.

Nhờ vào dữ liệu, một nhà bán lẻ tại Mỹ đã dự đoán đúng một thiếu nữ đang mang thai dựa trên thói quen mua hàng của cô ấy. Google có thể hiển thị chính xác quảng cáo phù hợp với bạn. Facebook biết gia đình của bạn, bạn đang trong mối quan hệ với người nào, dự đoán được mối quan hệ này kéo dài trong bao lâu, thậm chí cho biết mức độ thông minh của bạn…

Tuy nhiên, hiện có chưa đến 0,5% dữ liệu được phân tích và sử dụng. Nhận thấy mảnh đất màu mỡ này, Bernard Marr đã cho ra đời cuốn sách Chiến Lược Dữ Liệu để cung cấp cho người đọc cách thức tối đa hóa sức mạnh của dữ liệu bên cạnh việc tránh những rắc rối liên quan đến pháp lý, danh tiếng và tài chính. Cuốn sách hội tụ những kiến thức về dữ liệu được đơn giản hóa với nhiều ví dụ dễ hiểu.

Tầm quan trọng của chiến lược dữ liệu ngày càng được khẳng định qua thành công của các doanh nghiệp hoạt động trên nền tảng dữ liệu như Alphabet, Facebook, Narrative Science, Amazon, Apple… Việc có một chiến lược dữ liệu mạnh, theo lộ trình khoa học đã trở thành một phần tất yếu trong ADN của mỗi tổ chức. Nó xứng đáng nhận được sự quan tâm ngang với chiến lược marketing, khách hàng, sản phẩm hay thu hút nhân tài của doanh nghiệp.

Chiến Lược Dữ Liệu không chỉ phù hợp cho người bước đầu làm quen với dữ liệu, mà còn cung cấp cái nhìn bao quát về những thay đổi đang diễn ra trên thị trường và nâng cao kỹ năng cho người đang chịu trách nhiệm về mảng dữ liệu của doanh nghiệp.

https://firstnews.com.vn/vi/tac-pham/...
Profile Image for Petty Lisbon .
369 reviews3 followers
May 9, 2019
I should've realize that this would be aimed more at executives and other decision makers instead of just the plebeians like myself, but this book is more of a textbook on why you should use data (hint, if you're already reading this book, you probably were gonna try it out anyway) and then explaining it. I feel like I would've read it in class and I'm shocked I didn't have to (the format seems ripe for outlining and index cards). I was expecting more a book about what you can do with data on the lower end of the professional level, but I guess this was the wrong book for it. I was kind of side eyeing how it only lightly went over the risky parts of data, but it gets covered near the end of the book.
35 reviews3 followers
February 1, 2019
I must say I am a bit disappointed about this book. This has a lot to do with expectations. I thought this book would give me an insight in how to build a good data strategy for a company. It doesn't. Instead it is a good introductory book to the overall importance of data for companies and how companies can benefit from using data and a good data strategy to support their overall company strategy. In that sense it is not bad at all, but it is clearly targeted at people who are new to this area and need a good introduction. There it serves it purpose well.
Author 2 books
March 11, 2020
Written by journalist not manager

Too shallow, not practical. Collection of some stories from the news, but not based on managerial experience. If you need basics and haven’t read about data science before - go for it. If you know something about data management - don’t expect insights.
4 reviews5 followers
March 28, 2020
I’m a Product Manager working with digital products. I was looking forward to this one (specially given the good reviews). Unfortunately it turned out to be a bit disappointing... very fluffy book with repeated insights that could have been summarized in one good article.

If you are looking for a high level overview of data strategy this might be your book (although I think the title is even a bit misleading). But unfortunately I cannot recommend this one if you want to learn this topic in-depth as well as applicable frameworks to design and implement your data strategy.
Profile Image for Mark Koester.
109 reviews22 followers
September 1, 2018
All about data for companies. This is a comprehensive and encyclopedic read wit lots of good examples. It is well-organized, meaning it could function as good starter using individual chapters. Not exactly a page turner but good lay of the land for anyone working in the data space.
4 reviews
November 20, 2020
Too many examples, lacks deep analysis and methodology

I bought this book expecting to learn how to conduct a data strategy. I was disappointed in that sense, nonetheless the book shows some great examples of data strategy.
Profile Image for Omar Trejo.
47 reviews1 follower
April 28, 2020
A high-level view of data strategies with some inadequate organization of data analysis techniques.
3 reviews
August 18, 2020
Lacks depth in most topics it addresses. It's good to help you develop a framework to define your data strategy, but to fully develop it you will need to consult other sources.
Profile Image for BCS.
218 reviews33 followers
April 13, 2018
Bernard is an accomplished author, lightly gliding through several big data scenarios, telling us what he wishes to say, saying it, and then saying it again. A light, easy read with several real-life illustrations from the usual suspects and several others such as Dickey's Barbecue Pit and GolfTEC. From the off, every business is now a data business that needs to capture and manage the right data, transforming it into information to improve its internal operations. Various technical layers about data generated internally as well as bought in, how it is stored and subsequently how the information it contains provide insights. Differences between data, its information, and the strategic business insights it provides are delineated. Tools such as Hadoop and cloud services illustrate technical support for big data. Bernard presents a positive and delightful portfolio of big data, illustrating the core three Vs and extending to a fourth - Veracity, and subsequently addressing data governance.

Internally, business is essentially about optimising complex multi-dimensionality. Regulation enhances some dimensions. A successful data strategy is about envisioning data within the future context, developing out information requirements whilst minimising data. As Barnard says, collecting excess data can be more expensive than just its collection and storage costs. Regulation such as the EU General Data Protection Regulation (GDPR) that has been on the statute book for two years and becomes active 25 May 2018, can incur heavy financial penalties for collecting excess data. GDPR is included here almost as a postscript. Yet GDPR imposes strategic data requirements country by country, even on driverless vehicles. Article 3(2) of this regulation applies to the processing of personal data of any individual "in the EU", including non-EU tourists. Barnard states it applies just to EU citizens.

The legacy challenge is to address big data and integrate it with or replace existing regular data. Information multi-dimensionality results in a diverse array of data strategies. Many of the techniques, categorisations, variety of data analyses and processing illustrated apply equally well to data of either type, regular as well as big. Analytic services such as Amazon Web Services (AWS) and IBM Watson get passing mention.

Developed out of cryptocurrency (for example, Bitcoin), blockchain gets superficial coverage. Everledger, the seminal blockchain diamond identity project is absent. Being a network of distributed nodes critically shareable only on the blockchain, and being intrinsically immutable could have been made clearer. Also immutable blockchain could strategically conflict with GDPR.

Each big organisation will have at least one legacy data warehouse and will be considering progressing to one or more data lakes. Being advised 'keep the data lake in mind as a potential future option' does not offer any clear advice. An old-style data warehouse is briefly touched on as being 'where data is organized in a hierarchical, logical way that is structured and fixed.' Having a data lake used as a free-for-all as suggested could compromise the organisation's ability to have a consistent, valid view across its portfolio.

To summarise this review, parts of this book are very readable, but two or three of today’s hot topics are sadly not given much depth.

It looks like Barnard has a reasonable grasp of data, especially big data, but I believe he should have covered these other topics to a reasonable level, which he covered more in passing than in any depth.

For that reason, I can only give the book 5 out of 10.

Review by Paul Ramsay
Originally posted: http://www.bcs.org/content/conWebDoc/...
Profile Image for Javier  Rodriguez.
15 reviews
March 3, 2022
That Google knows what you are looking for online, or that Facebook knows who you are friends with, as well as your internet provider knows every page you have ever visited, all that, is old news. Your smartphone knows much more; where you are going, how fast you are going, where you will be going tomorrow, where you are staying, what you are eating, where you are eating and what you will be eating tomorrow. The technical possibilities seem unlimited today. Currently, this data is not shared with the police, or at least I don't know about it yet. However, more and more insurance companies are starting to use smartphone data to deduce who is a safe driver and who is more of a risk.

The fourth industrial revolution will not happen without Big Data. Companies can gain a significant advantage through the strategic use of data. Bernard Marr even goes a step further; only those who understand how to properly use the immense flood of data in the company will survive. Don't panic, we are not there yet; less than 0.5 percent of all data in companies is currently evaluated and used. However, reports on practical examples that show the potential of big data are increasing from year to year.

I try to disclose as little as possible in my private life. However, how you feel about data collecting should not stop you as a business leader or manager from thinking about the correct data strategy for your business. Decide for yourself whether you can afford to be unconcerned or sceptical about data. In Data Strategy you will find a simple guide to a complex subject. The topic is illustrated with case studies from large corporations as well as small regional retail chains. Find out how to identify your strategic data needs, what methods you can use to collect data and, most importantly, how to turn your data into organisational capabilities.
Profile Image for First News.
35 reviews2 followers
February 24, 2020
Đây sẽ là một quyển sách “khó nhai” đối với những người không có kiến thức về dữ liệu, chưa từng tiếp cận với dữ liệu hay không có nhu cầu tìm hiểu về lĩnh vực này.

Tuy nhiên, đối với những người có cơ hội tiếp xúc nhưng lại không biết cách xử lý, tận dụng và phân tích dữ liệu, thì quyển sách này lại không hề khô khan. Ngược lại, sẽ rất hữu ích vì nó cung cấp một nền tảng vững chắc và dễ hiểu về dữ liệu. Những người nên tham khảo là các CIO, CTO, CEO, CMO hay những người ở cấp quản lý phải đối mặt với dữ liệu hàng ngày nhưng chưa biết cách biến chúng thành chiến lược và hành động cụ thể nhằm nâng cao khả năng kinh doanh trong thời đại công nghiệp 4.0.

Tuy nhiên, với tầm kinh nghiệm và hiểu biết như trên của người đọc, việc đọc quyển sách này cũng không hề dễ dàng, đòi hỏi người đọc phải vừa đọc vừa suy ngẫm nhiều về thực tế. Do đó, tôi nghĩ rằng người đọc phải có kỹ năng phân tích và thực sự đang có vấn đề cần giải quyết đối với dữ liệu, để từ đó tìm ra sự liên quan với quyển sách.

Tác giả nói về những ứng dụng của dữ liệu, những phương pháp phân tích, cách tư duy, chiến lược tiếp cận, lưu trữ, xử lý và thái độ đúng trong việc quản lý dữ liệu ở bất kỳ ngành nghề nào. Hàm lượng thông tin khá nhiều và bao quát, mặc dù không đi sâu, nhưng cũng đủ để giúp cho những đối tượng bắt đầu quan tâm về dữ liệu nắm được những nền tảng ban đầu. Để triển khai sâu hơn thì cần phải có nền tảng kiến thức để nghe – hiểu các chuyên gia công nghệ.
Profile Image for Fabio Ismerim Ismerim.
124 reviews6 followers
April 3, 2019
Leitura interessante e bem leve para quem quer entender como o Big Data está mudando as empresas e se tornando cada vez mais o principal ativo, ou recurso, de um negócio.

Sem aprofundar muito em conceitos técnicos, embora ele chegue a explicar alguns modelos de previsão utilizados em machine learning, o autor foca bastante nos benefícios dos dados para as empresas e como você deve começar ( não quer dizer que tem um passo a passo)

A mensagem que fica, e me foi reforçada, é que dados e transformação digital é sobre pessoas. Se você quer trabalhar com dados, inserir análise de dados na sua empresa, ou criar uma cultura orientada a dados( data-driven) você precisa entender de pessoas primeiro.

Outro fator importante é saber quais perguntas devem ser respondidas antes de iniciar qualquer coisa relacionada a dados na sua empresa. Coletar os dados corretos é diferente, e mais eficiente, do que sair coletando tudo e não saber o que fazer depois. Key questions: entenda como os dados vão ajudar seu negócio a alcançar os objetivos estratégicos.

Recomendo para líderes, empresários e quem está precisando criar uma cultura de dados na empresa.
Profile Image for James (JD) Dittes.
798 reviews32 followers
November 25, 2021
Marr's mantra in Data Strategy: How to to Profit from a World of Big Data, Analytics and the Internet of Things is straightforward: "Every company is a data company."

In this wide-ranging book, written for business executives, Marr spends most of his time looking at the 'how' of data: how it's being used by a wide range of industries, from health care to aerospace, how business leaders can marshal data plans to suit their needs, how data itself is a product that can be sold by innovative companies.

I'm someone just entering the field of Data Strategy, and I found Marr's final chapters on the "why" of data to be fascinating. He puts the return on investing in data analysis at 13/1, and shows how the burgeoning need for data scientists matches the burgeoning number of uses (and sources) of data.

Data Strategy is a comprehensive and insightful look at a dynamic field of business--well worth the time to read for everyone from business leaders to those curious about the field.

Profile Image for Tuyet Lan.
559 reviews106 followers
March 8, 2023
Đối với mình đây là một cuốn sách rất hữu ích với các hướng dẫn cụ thể, cặn kẽ. Nếu như cuốn Big Data đưa ra các bức tranh lớn về việc công nghệ và khoa học máy tính đã, đang và sẽ thay đổi thế giới như thế nào; Thì cuốn sách này đưa ra các phân tích và hướng dẫn cụ thể cho các nhà quản lý về việc tận dụng những thành tựu sẵn có hoặc đi trước đón đầu làn sóng thay đổi đó bằng việc xây dựng chiến lược thu thập- quản lý- phân tích - sử dụng các khối lượng dữ liệu khổng lồ.

Tác giả nhấn mạnh tầm quan trọng của việc xác định mục tiêu sử dụng dữ liệu, lựa chọn công nghệ/ nhà cung cấp phù hợp, cũng như các lưu ý về những rắc rối có thể phát sinh. Nói liên tục đến vấn đề máy móc và công nghệ, nhưng tác giả vẫn xác định con người là trọng tâm của chiến lược này: từ chọn đối tác, tuyển dụng các nhà khoa học dữ liệu/ kỹ sư IT, đến đạo đức của những nhà phát triển trong việc bảo mật thông tin người dùng.
Profile Image for Bobby Hyam.
7 reviews
January 10, 2020
Fantastic book for an overview of what a data strategy should look like. As someone who sees opportunities for data everywhere, this book helped me put some structure around them and understand what the different components and considerations of a data strategy should be.

Some of the tooling sections are a little dated, with little mention of Google's tools who are now considered by many to be the leader in ML and big data analytics. Also, the huge emphasis on Hadoop is where the world is now rather than where it is going.

Other than that it was a very engaging read and I plan to go deeper on this topic now.
Profile Image for Nguyen..
21 reviews2 followers
September 8, 2022
Cuốn sách đầu tiên về data mà tớ đọc, vì được giới thiệu là khái quát về data ổn lắm, và cũng dễ đọc dễ hiểu nữa. Thì công nhận đúng thế thật. Các định nghĩa, lí lẽ, ví dụ đều được đưa ra rất đa dạng và gãy gọn. Nhưng sao cứ cảm giác cái flow phân tích của tác giả không hợp não tớ lắm ta. Và nhưng kiến thức được đưa ra vì khái quát nên lại chưa sâu, vì dễ đọc dễ hiểu nên lại cũng hơi dễ trôi. Nói chung là để làm quen với data từ con số 0 thì cuốn sách ổn đấy, nhưng nếu có chun chút vốn hiểu biết trong người rồi và đang mong được tiếp thu bí kíp để có "chiến lược về dữ liệu" thì sẽ rất chán và cảm thấy quá lí thuyết cho xem.
Profile Image for Preethi Evelyn Sadanandan.
5 reviews
December 4, 2023
Extremely well written book with a high level into how the data world works. The author covers critical topics that are essential to the field like ethics of working with data, data governance, data roles and their impact, how to assess data quality, data bias, laws working with data, implementing your data strategy and building a data culture. The case studies and examples are very interesting and extremely well researched. There is a quite a bit of fluff but still a must read for any data professional in the industry.
This entire review has been hidden because of spoilers.
20 reviews
September 29, 2019
So far, this has been the best high level book on data strategy I have read. It also covers analytical methods like regression theory and explains their purpose. Great for both leaders in the space and those who are looking to increase their data literacy.
Profile Image for Niklas Angmyr.
289 reviews5 followers
October 8, 2019
A standard a bit dull still credible introduction to how to work with big data, data science and alike. If you cover all aspects covered in the bokk in your business data strategy, you have made a great job.
Profile Image for Guy Taylor.
28 reviews4 followers
January 18, 2021
There is nothing in this book that anybody that’s actually piecing together a data strategy shouldn’t know. This is a primer on the pieces you need to understand to run a data business. Do not recommend as a strategic manual.
41 reviews
December 5, 2022
A really interesting, thought-provoking, and informative book. Bernard Marr's approach to writing about subjects like Big Data and AI makes it easy to digest and understand. A must-read for anyone planning to create a data strategy or update an existing one.
Profile Image for Erhan Erge.
7 reviews1 follower
May 29, 2020
Büyük veri araştırmasına yeni başlayanlar için önerebileceğim bir kitap. Bu sektörde çalışanlar için hafif düzeyde diyebilirim. Kullanılan örnekler benzer kitaplarda okuduğum örneklerle aynı.
16 reviews
November 14, 2020
Very informative on the implications and potential of a data-enriched world. A must-read for the CIO of every company.
Profile Image for Fnayou.
9 reviews1 follower
April 4, 2021
A good book for people with no or close to none knowledge about data. For data literates, this could be a good review of how data can manifest itself from an organisational point of view.
16 reviews
Read
May 22, 2021
"It doesn't matter how much data you have, it's whether you use it successfully that counts."
Profile Image for Marcus Goncalves.
800 reviews6 followers
November 6, 2022
Overall, good overview of the world of data science and the advances in this discipline in many industries and sectors. It’s more of a strategy book. Good fundamentals, though.
Displaying 1 - 30 of 37 reviews

Can't find what you're looking for?

Get help and learn more about the design.