Jump to ratings and reviews
Rate this book

Social Network Based Recommender Systems

Rate this book
This dissertation, "Social Network Based Recommender Systems" by Hui, Li, 李輝, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author.

Recommender systems have become de facto tools for suggesting items that are of potential interest to users and achieving great success in e-commerce. Many famous online vendors such as Amazon and Netix leverage recommender systems to advertise products to customers. Predicting a user's rating on an item is the fundamental recommendation task. Traditional methods that generate predictions by analyzing the user-item rating matrix perform poorly when the matrix is sparse. Recently, approaches that use data from social networks to improve the accuracy of rating prediction are emerging. However, most of the social network based recommender systems only consider direct friendships and they are less effective when the targeted user has few social connections. In this thesis, we review important rating prediction approaches in traditional and social based recommender systems. We extend SNRS, a state-of-the-art social recommender system by considering classifying the correlations between pairs of users ratings to enhance accuracy and including more users in the temporal influence links of the target user to improve the coverage. In addition, we boosted the effectiveness of social recommender systems based on matrix factorization, by proposing two models that incorporate the overlapping community regularization into the matrix factorization framework differently. Our empirical studies on real data show that our approaches outperform baselines in both traditional and social network based recommender systems.

Recommender systems (Information filtering)
Online social networks

84 pages, Hardcover

Published January 26, 2017

About the author

Hui Li

97 books4 followers

Ratings & Reviews

What do you think?
Rate this book

Friends & Following

Create a free account to discover what your friends think of this book!

Community Reviews

5 stars
0 (0%)
4 stars
1 (100%)
3 stars
0 (0%)
2 stars
0 (0%)
1 star
0 (0%)
No one has reviewed this book yet.

Can't find what you're looking for?

Get help and learn more about the design.