This book is concerned with one of the most fundamental questions of mathematics: the relationship between algebraic formulas and geometric images.At one of the first international mathematical congresses (in Paris in 1900), Hilbert stated a special case of this question in the form of his 16th problem (from his list of 23 problems left over from the nineteenth century as a legacy for the twentieth century).In spite of the simplicity and importance of this problem (including its numerous applications), it remains unsolved to this day (although, as you will now see, many remarkable results have been discovered).
Vladimir Igorevich Arnold (alternative spelling Arnol'd, Russian: Влади́мир И́горевич Арно́льд, 12 June 1937 – 3 June 2010)[1] was a Soviet and Russian mathematician. While he is best known for the Kolmogorov–Arnold–Moser theorem regarding the stability of integrable systems, he made important contributions in several areas including dynamical systems theory, catastrophe theory, topology, algebraic geometry, classical mechanics and singularity theory, including posing the ADE classification problem, since his first main result—the partial solution of Hilbert's thirteenth problem in 1957 at the age of 19.