Jump to ratings and reviews
Rate this book

How to Count to Infinity

Rate this book

Birds do it, bees do it, even educated fleas do it... Not falling in love, but counting. Animals and humans have been using numbers to navigate their way through the jungle of life ever since we all evolved on this planet. But this book will help you to do something that humans have only recently understood how to do: to count to regions that no animal has ever reached. By the end of this book you'll be able to count to infinity...and beyond.
On our way to infinity we'll discover how the ancient Babylonians used their bodies to count to 60 (which gave us 60 minutes in the hour), how the number zero was only discovered in the 7th century by Indian mathematicians contemplating the void, why in China going into the red meant your numbers had gone negative and why numbers might be our best language for communicating with alien life.
But for millennia contemplating infinity has sent even the greatest minds into a spin. Then at the end of the nineteenth century mathematicians discovered a way to think about infinity that revealed that it is a number that we can count. Not only that. They found that there are an infinite number of infinities, some bigger than others. Just using the finite neurons in your brain and the finite pages in this book, you'll have your mind blown discovering the secret of how to count to infinity.

64 pages, Hardcover

Published July 7, 2020

3 people are currently reading
244 people want to read

About the author

Marcus du Sautoy

35 books503 followers
Marcus Peter Francis du Sautoy, OBE is the Simonyi Professor for the Public Understanding of Science and a Professor of Mathematics at the University of Oxford.

Ratings & Reviews

What do you think?
Rate this book

Friends & Following

Create a free account to discover what your friends think of this book!

Community Reviews

5 stars
34 (18%)
4 stars
66 (35%)
3 stars
71 (38%)
2 stars
8 (4%)
1 star
5 (2%)
Displaying 1 - 20 of 20 reviews
Profile Image for Brendan.
1,277 reviews53 followers
May 13, 2018
Short book that attempts to explain counting to infinity. Some of the book is punchy but other chapters lag behind. I thought this might be a interesting and quick read but it never comes together as a whole.
Profile Image for Kin.
512 reviews164 followers
October 31, 2021
อ่านจบได้ในวันเดียว สนุกมาก แทบไม่มีพื้นฐานคณิตศาสตร์เลยก็ยังเข้าใจได้ไม่ยาก
Profile Image for Austin.
127 reviews4 followers
September 26, 2020
An easy and entertaining read for the uninitiated to get a sense of what mathematicians know about infinity. You can easily get through the whole thing in less than half an hour, but hopefully the concepts will intrigue you for much longer.
Profile Image for Helen Lloyd.
145 reviews
February 26, 2024
I normally really enjoy Marcus du Dautoy, but I found this a bit of a let down. Perhaps because it was trying to fit into the format of this series, it never really came together and I was left feeling unsatisfied. There were some nice analogies and the history of irrational numbers was fun but despite his discussion of different types of infinities I couldn't really get to grips with whether this was linguistic or mathematical semantics at various points in the book. A bit of both I think.
Profile Image for Mariateresa.
866 reviews17 followers
March 7, 2023
Ci sono volte in cui Stefano ed io restiamo a parlare, nella penombra della sera, nella calma di una giornata che finalmente rallenta e ci lascia tempo per noi.
E a volte, anche dopo anni, lui mi dice:
"ti voglio un bene infinito."
E io gli rispondo
"e io ti voglio un bene infinito +1",
E lui ride, esclama : “non vale! Così vinci sempre tu!!” E mi bacia, sapendo che è una gara in cui vinciamo sempre tutti e due, ma io mi sento sempre un po’ più vincente perché aggiungo un numero n all’infinito. O addirittura infinito a infinito.
Tutto per dargli l’idea di qualcosa di incalcolabile, di così vasto da non poter essere contato nei limiti di un tempo umano.


E oggi, leggendo il saggio di Marcus Di Sautoy, scopro che l'infinito si può calcolare.
Urca. O, come direbbe Peter Griffin: “momento, momento, momento” (anche questo all’infinito, volendo).

Scopro che Cantor, già nell’Ottocento aveva trovato un modo calcolare questo infinito e, anni dopo, anche Hilbert immaginando un Albergo dell’Infinito dove far alloggiare i numeri naturali e irrazionali, infiniti anche loro.
Riuscendoci! Wow!
E,a proposito di (numeri, non gente, anche se sospetto che Pitagora fosse un tantino suscettibile) irrazionali, povero Ippaso!
Gettato in mare e fatto annegare per aver infranto il voto del silenzio e aver portato scompiglio nell’universo armonico di Pitagora fatto di numeri pari e dispari….ma come spiegare, allora, il valore della radice quadrata di due (, 41421 35623 73095 04880 16887 24209 69807 85696 71875 37694………), che moltiplicata per se stessa non dà come risultato 2?
O il  (pi greco) , un numero affascinante che non smette di incantarci?

In questo piccolo saggio si fa un viaggio emozionante e a volte non semplice (io amo la matematica, ma sono decenni che non la rispolvero), ma alla portata di chiunque per essere andare “verso l’infinito e oltre!” e per scoprire che la matematica su può approcciare in modi diversi, non un solo infinito, ma tanti e nominabili!
Molto carino e non guarderò più le figure geometriche con gli stessi occhi perché come dice l’autore “è incredibile: quando guardiamo un cerchio o un triangolo stiamo guardando l’infinito” .
Ho imparato un sacco di cose, o meglio, ho grattato la superficie, ed è stato entusiasmante! Ho viaggiato nel tempo e nello spazio grazie ai numeri.

E la prossima volta che mi ritroverò a parlare con Stefano gli dirò: “ti amo come un ospite dell’albergo dell’Infinito, tra razionalità e irrazionalità”. Sono curiosa di sentire cosa risponderà!

5 stelle!
E che coincidenza, dell’albergo dell’inifinito avevo sentito parlare proprio in un romanzo di Paola Chiozza (quelli della serie Goldsmith)!
Buone letture e alla prossima!
Profile Image for José Miguel (TheHudson).
272 reviews9 followers
August 15, 2019
Es un imperdible para quienes gustan del asombro por las matemáticas o bien para inducir a quiénes siempre han sentido curiosidad por los números.

Un viaje impecable hacia el vasto universo de los números, recomendado para niños de corta, mediana y de longeva edad.

Es un sin duda, una invitación a despertar (o a desempolvar) la imaginación.
Profile Image for Raffaella.
208 reviews4 followers
March 10, 2019
Altough not convincing in some parts (infinity hotel pairing trick), these 48 pages can bring you to the illussion of grasping the infinity. The most amazing thing I learnt from it, is that “pi” has a trillion digits!
4 reviews
December 27, 2017
A short but well written introduction to a tricky mathematical concept. It takes you from A to B without any tangents to complicate things and I came away with a good understanding and an appreciation for the subtlety of infinity
Profile Image for Fabián Sanhueza.
Author 0 books8 followers
April 22, 2022
Me gustó la manera en que Du Sautoy explica el problema del Hotel Infinito de Cantor. Si alguien busca una explicación más visual, puede buscar "Hotel Infinito Veritasium" en Youtube y dará con una alternativa magnífica.
Profile Image for Andy Cyca.
169 reviews26 followers
January 18, 2023
Qué libro tan lindo! Es una muy bonita introducción al concepto matemático del infinito, con suficiente detalle para asombrar al lector nivel sin ahogarlo en detalles. Se lee rápido, pero vale mucho la pena para quien quiere darse un primer salto de curioso
Profile Image for Emil Rapp.
59 reviews2 followers
April 10, 2024
Elin sa att det såg ut som en barnbok, och det visade sig vara hyfsat sant. Sista kapitlet hade dock hjälpt mig med två av frågorna på ett seminarium om abstrakt algebra idag. Det måste ju ändå betyda något?
Profile Image for Beatriz.
149 reviews3 followers
September 8, 2024
Durante una hora he vuelto a primero de carrera. He recordado lo que era razonar sobre conceptos matemáticos que damos por sabidos y he vuelto a maravillarme (una vez más) en el mundo de las matemáticas al que tanto me gusta regresar de cuando en cuando
Profile Image for Ross.
260 reviews3 followers
March 16, 2018
Short, crisp, clever and illuminating.
Profile Image for Pedro Aldama.
64 reviews1 follower
June 24, 2019
Quienquiera que tú seas: al atardecer sal
de tu cuarto, en el cual lo sabes todo;
allá en el infinito está tu casa
como el final: quienquiera que tú seas.

Rainer Maria Rilke, Iniciación.
Profile Image for M.
22 reviews3 followers
July 30, 2021
good but too short. You can read it in 1/2 hour.
Profile Image for Carles .
377 reviews11 followers
February 21, 2025
Un petit gran llibre. Es llegeix en poquíssim temps.
Primer, Marcus du Sautoy fa una breu introducció dels nombres i els sistemes per comptar, des de les troballes paleolítiques passant per egipcis, maies i babilonis.
En el breu capítol següent ens posa un exemple de com una successió infinita d’elements resulta en un nombre ben normal i corrent. També ens explica que per a comparar la mida de dos conjunts amb molts elements, els humans ―i inclús altres animals― normalment emprem el truc d’anar emparellant ambdós conjunts, element a element.
A continuació ens condueix a l’«Hotel Infinit» que va imaginar David Hilbert, per a explicar-nos un dels descobriments més fascinants de la història de les matemàtiques, en aquest cas el que va aconseguir la prodigiosa ment de Georg Cantor.
Veurem el propi Cantor a la recepció de l’hotel assignant les habitacions als hostes que van arribant. Els enters hi caben. Les fraccions hi caben. Però els irracionals no.
La nostra estància en aquest «Hotel Infinit» de Cantor-->Hilbert-->Sautoy és deliciosa, amb comentaris graciosos fins hi tot, i amb arguments irrefutables i enginyosíssims, però a la vegada molt fàcils d’entendre per a llecs en matemàtiques avançades com jo mateix.
Una meravella de llibre que et deixa en un estat de reflexió i enlluernament bocabadant. I et vas trencant el cap amb preguntes com ara... Si un conjunt “A” té una quantitat infinita d’elements, com pot ser que un altre conjunt “B” tingui més elements que els que tenia “A”?... i hi dones voltes...sobre el significat de l’expressió “quantitat infinita d’elements” amb que ens referíem a “A”, si el conjunt “B” té més elements que aquesta “quantitat infinita d’elements” de “A”... i segueixes donant-li voltes a la qüestió... fins l’infinit, potser?
Profile Image for Aida Kane.
9 reviews4 followers
May 25, 2019
"Aquel descubrimiento indignó a los demás Pitagóricos. Toda una secta se había ido formando entorno al convencimiento de Pitágoras de que la harmonía matemática gobernaba el universo. El descubrimiento de aquellos números irracionales iba en contra de sus creencias. La secta decidió que aquello quedaría en secreto... Pero Hípaso fue incapaz de guardar para sí mismo aquella revelación (...) y fue llevado a alta mar y ahogado"

Lol con la conspiración y castigo de la secta matemática
Displaying 1 - 20 of 20 reviews

Can't find what you're looking for?

Get help and learn more about the design.