Jump to ratings and reviews
Rate this book

Machine Learning in Quantitative Finance: History, Theory, and Applications

Rate this book
Written by a senior and well-known member of the Quantitative Finance community who currently runs a research group at a major investment bank, the book will demonstrate the use of machine learning techniques to tackle traditional data science type problems – time-series analysis and the prediction of realised volatility but will also look at novel applications. For example, the Universal Approximation Theorem of Neural Networks shows that a neural network can be used to approximate any function (subject to a number of weak conditions), although how the network is trained is not given. This will be explored within the book. Specific applications will include using a trained neural network to represent market-standard volatility smile models (such as SABR) as well as complex derivative pricing. The book will also potentially look at training a network via reinforcement learning to risk manage a derivatives portfolio. Readers will be attracted by a comprehensive presentation of the techniques available, with the historical perspective providing intuitive understanding of their development, combined with a range of practical examples from the trading floor. Key

304 pages, Hardcover

Published August 7, 2023

1 person is currently reading
4 people want to read

About the author

William McGhee

5 books1 follower

Ratings & Reviews

What do you think?
Rate this book

Friends & Following

Create a free account to discover what your friends think of this book!

Community Reviews

5 stars
0 (0%)
4 stars
0 (0%)
3 stars
0 (0%)
2 stars
0 (0%)
1 star
0 (0%)
No one has reviewed this book yet.

Can't find what you're looking for?

Get help and learn more about the design.