The study of matroids is a branch of discrete mathematics with basic links to graphs, lattices, codes, transversals, and projective geometries. Matroids are of fundamental importance in combinatorial optimization and their applications extend into electrical engineering and statics. This incisive survey of matroid theory falls into two the first part provides a comprehensive introduction to the basics of matroid theory while the second treats more advanced topics. The book contains over five hundred exercises and includes, for the first time in one place, short proofs for most of the subjects' major theorems. The final chapter lists sixty unsolved problems and details progress towards their solutions.
read first 6 chapters, now shift to algebraic matroid. There is no algebraic matroid theory in this book, because it is an old book (compare to the entire history of matroid theory).