Jump to ratings and reviews
Rate this book

Moduli Spaces of Curves, Mapping Class Groups and Field Theory

Rate this book
This book grew out of a workshop on the applications of moduli spaces of Riemann surfaces in theoretical physics and number theory and on Grothendieck's dessins d'enfants and their generalizations. Chapter 1 gives an introduction to Teichmuller space that is more concise than the popular textbooks, yet contains full proofs of many useful results which are often difficult to find in the literature. This chapter also contains an introduction to moduli spaces of curves, with a detailed description of the genus zero case, and in particular of the part at infinity. Chapter 2 takes up the subject of the genus zero moduli spaces and gives a complete description of their fundamental groupoids, based at tangential base points neighboring the part at infinity; the description relies on an identification of the structure of these groupoids with that of certain canonical subgroupoids of a free braided tensor category. It concludes with a study of the canonical Galois action on the fundamental groupoids, computed using Grothendick-Teichmuller theory. Finally, Chapter 3 studies strict ribbon categories, which are closely related to braided tensor here they are used to construct invariants of 3-manifolds which in turn give rise to quantum field theories.

131 pages, Paperback

First published June 1, 2003

About the author

Xavier Buff

12 books

Ratings & Reviews

What do you think?
Rate this book

Friends & Following

Create a free account to discover what your friends think of this book!

Community Reviews

5 stars
0 (0%)
4 stars
0 (0%)
3 stars
0 (0%)
2 stars
0 (0%)
1 star
0 (0%)
No one has reviewed this book yet.

Can't find what you're looking for?

Get help and learn more about the design.