Jump to ratings and reviews
Rate this book

Numerical Methods for Bifurcations of Dynamical Equilibria

Rate this book
Dynamical systems arise in all fields of applied mathematics. The author focuses on the description of numerical methods for the detection, computation, and continuation of equilibria and bifurcation points of equilibria of dynamical systems. This subfield has the particular attraction of having links with the geometric theory of differential equations, numerical analysis, and linear algebra. Several features make this book unique. The first is the systematic use of bordered matrix methods in the numerical computation and continuation of various bifurcations. The second is a detailed treatment of bialternate matrix products and their Jordan structure. Govaerts discusses their use in the numerical methods for Hopf and related bifurcations. A third feature is a unified treatment of singularity theory, with and without a distinguished bifurcation parameter, from a numerical point of view. Finally, numerical methods for symmetry-breaking bifurcations are discussed in detail, up to fundamental cases covered by the equivariant branching lemma.

384 pages, Paperback

First published January 1, 1987

1 person is currently reading
2 people want to read

About the author

Ratings & Reviews

What do you think?
Rate this book

Friends & Following

Create a free account to discover what your friends think of this book!

Community Reviews

5 stars
1 (100%)
4 stars
0 (0%)
3 stars
0 (0%)
2 stars
0 (0%)
1 star
0 (0%)
No one has reviewed this book yet.

Can't find what you're looking for?

Get help and learn more about the design.