Ажиотаж вокруг искусственного интеллекта и его применения в классическом бизнесе не утихает, но многие компании до сих пор не понимают, какую реальную выгоду принесет им внедрение новых технологий в их бизнес-процессы. Эксперт в области аналитики и больших данных, преподаватель в Гарвардской школе бизнеса Томас Дэвенпорт в своей книге покажет, как можно эффективно интегрировать ИИ и когнитивные технологии в текущую бизнес-стратегию предприятия, чтобы сделать продукты привлекательнее, процессы совершеннее, а компанию успешнее. Он подробно рассматривает преимущества и сложности внедрения различных видов технологий: статистическое машинное обучение, нейронные сети, глубокое обучение, обработку естественного языка, экспертные системы на основе правил, роботов и роботизированную автоматизацию процессов. И приводит примеры как успешного, так и неудачного использования ИИ в разных компаниях: Amazon, Google, Facebook, GlaxoSmithKline, Uber, GE, цифровом банке DBS и др. Для топ-менеджеров, руководителей ИТ-департаментов и отделов инноваций, операционных директоров.
I thought the underlying message of the book was strong, but the content suffered from a lack of (in my opinion) use cases and scenarios that haven't already been heavily popularized. Many of the examples referred to Robotic Process Automation, pseudo-ML, and superficial intelligence rather than something more robust and impactful.
The book reads like a consulting discussion document, likely due to the author's involvement with Deloitte, and continuously references the same survey of individuals apparently "in the know" about AI and AI-like technologies. From that perspective, it does offer some practical application to organizations contemplating deploying "AI" initiatives in their environments.
I would say that the criticisms are fairly tame or guarded of making statements that could cut too deep, which leaves the reader (or at least this reader) grasping for more depth or insight. Decent book if you're a consultant or industry analyst looking at a broad perspective, but look elsewhere for deeper examination of AI and work.
Good practical overview for biz stakeholders fo how and where to leverage AI. It was a bit light on specifics. Also lumping RPA into the same bucket as other AI seemed a bit of a stretch. Most people looking to gain some expertise, I suspect, would not put RPA in the same category. It doesnt have the same challenges in terms of adoption.
Una estrella y media porque no es deplorable pero sí es aburridísimo. Montones de enumeraciones y autobombo constante hacen que acabe uno aborreciendo la IA. Eso y el prólogo "Creo que el mundo está listo para un libro de IA como este". Shit yourself little parrot.
Excellent overview of the state of AI implementation in corporations and other orgs (at least as of 2018, when the book was published). Davenport also succinctly covers issues of social responsibility and, most importantly, the critical process improvement and change management issues attending any serious AI implementation.
На случай, если кому-то тоже интересно, о чем на самом деле шла речь там, где в русском переводе появляются “кустарные” аналитические модели, сообщаю: в оригинале были “artisanal” analytical models, то есть аналитические модели, созданные вручную мастерами ремесла.
AI is a group of cognitive technologies aimed at knowledge work processes within an organization. Overall, will likely follow Amara’s Law – short-term benefits, long term revolution.
Covers three key areas (RPA, cognitive insights, and cognitive engagement), why movement has been limited so far, and the potential effects on the future workforce.
There is nothing scary about AI, but somehow, Thomas Davenport made it quite an intimidating portent of things to come (and of some things as they currently are).
I did enjoy how he explored the many ways AI - used in varying complexities and by companies of differing maturities - can augment us human beings, and transform the future of work, commerce, and industries.
Note: This was from my 2019 reading list, and the words are from my thoughts back then. Minor grammatical edits may have been applied.
Felt like the book could’ve been 50 pages. A lot of the points made were repeated and the writing was just not good. I’m sure that there are better books discussing AI out there