Jump to ratings and reviews
Rate this book

Micrpgraphia: Or Some Physiological Descriptions of Minute Bodies Made By Magnifying Glasses

Rate this book
Illustrated.
Observ. XXXIX. Of the Eyes and Head of a Grey drone-Fly, and of several other creatures.

I took a large grey Drone-Fly, that had a large head, but a small and slender body in proportion to it, and cutting off its head, I fix'd it with the forepart or face upwards upon my Object Plate (this I made choice of rather then the head of a great blue Fly, because my enquiry being now about the eyes, I found this Fly to have, first the biggest clusters of eyes in proportion to his head, of any small kind of Fly that I have yet seen, it being somewhat inclining towards the make of the large Dragon-Flies. Next, because there is a greater variety in the knobs or balls of each cluster, then is of any small Fly.) Then examining it according to my usual manner, by varying the degrees of light, and altering its position to each kinde of light, I drew that Schem. 24. representation of it which is delineated in the 24. Scheme, and found these things to be as plain and evident, as notable and pleasant.

First, that the greatest part of the face, nay, of the head, was nothing else but two large and protuberant bunches, or prominent parts, ABCDEA, the surface of each of which was all cover'd over, or shap'd into a multitude of small Hemispheres, plac'd in a triagonal order, that being the closest and most compacted, and in that order, rang'd over the whole surface of the eye in very lovely rows, between each of which, as is necessary, were left long and regular trenches, the bottoms of every of which, were perfectly intire and not at all perforated or drill'd through, which I most certainly was assured of, by the regularly reflected Image of certain Objects which I mov'd to and fro between the head and the light. And by examining the Cornea or outward skin, after I had stript it off from the several substances that lay within it, and by looking both upon the inside and against the light.
...
Sixthly that the number of the Pearls or Hemispheres in the clusters of this Fly, was neer 14000. which I judged by numbering certain rows of them several ways, and casting up the whole content, accounting each cluster to contain about seven thousand Pearls, three thousand of which were of a size, and consequently the rows not so thick, and the foure thousand I accounted to be the number of the smaller Pearls next the feet and proboscis. Other Animals I observ'd to have yet a greater number, as the Dragon-Fly or And others to have a much less company, as an Ant, &c. and several other small Flies and Insects.

Seventhly, that the order of these eies or Hemispheres was altogether curious and admirable, they being plac'd in all kind of Flies, and aerial animals, in a most curious and regular ordination of triangular rows, in which order they are rang'd the neerest together that possibly they can, and consequently leave the least pits or trenches between them. But in Shrimps, Crawfishes, Lobsters, and such kinds of Crustaceous water Animals, I have yet observ'd them rang'd in a quadrangular order, the rows cutting each other at right angles, which as it admits of a less number of Pearls in equal surfaces; so have those creatures a recompence made them, by having their eyes a little movable in their heads, which the other altogether want. So infinitely wise and provident do we find all the Dispensations in Nature, that certainly Epicurus, and his followers, must very little have consider'd them, who ascrib'd those things to the production of chance, that wil, to a more attentive considerer, appear the products of the highest Wisdom and Providence.

Kindle Edition

Published December 14, 2008

1 person want to read

About the author

Robert Hooke

96 books21 followers
Robert Hooke FRS (/hʊk/; 28 July [O.S. 18 July] 1635 – 3 March 1703) was an English natural philosopher, architect and polymath.

His adult life comprised three distinct periods: as a scientific inquirer lacking money; achieving great wealth and standing through his reputation for hard work and scrupulous honesty following the great fire of 1666, but eventually becoming ill and party to jealous intellectual disputes. These issues may have contributed to his relative historical obscurity.

He was at one time simultaneously the curator of experiments of the Royal Society and a member of its council, Gresham Professor of Geometry and a Surveyor to the City of London after the Great Fire of London, in which capacity he appears to have performed more than half of all the surveys after the fire. He was also an important architect of his time – though few of his buildings now survive and some of those are generally misattributed – and was instrumental in devising a set of planning controls for London whose influence remains today. Allan Chapman has characterised him as "England's Leonardo".

Robert Gunther's Early Science in Oxford, a history of science in Oxford during the Protectorate, Restoration and Age of Enlightenment, devotes five of its fourteen volumes to Hooke.

Hooke studied at Wadham College during the Protectorate where he became one of a tightly knit group of ardent Royalists led by John Wilkins. Here he was employed as an assistant to Thomas Willis and to Robert Boyle, for whom he built the vacuum pumps used in Boyle's gas law experiments. He built some of the earliest Gregorian telescopes and observed the rotations of Mars and Jupiter. In 1665 he inspired the use of microscopes for scientific exploration with his book, Micrographia. Based on his microscopic observations of fossils, Hooke was an early proponent of biological evolution. He investigated the phenomenon of refraction, deducing the wave theory of light, and was the first to suggest that matter expands when heated and that air is made of small particles separated by relatively large distances. He performed pioneering work in the field of surveying and map-making and was involved in the work that led to the first modern plan-form map, though his plan for London on a grid system was rejected in favour of rebuilding along the existing routes. He also came near to an experimental proof that gravity follows an inverse square law, and hypothesised that such a relation governs the motions of the planets, an idea which was subsequently developed by Newton. Much of Hooke's scientific work was conducted in his capacity as curator of experiments of the Royal Society, a post he held from 1662, or as part of the household of Robert Boyle.

Ratings & Reviews

What do you think?
Rate this book

Friends & Following

Create a free account to discover what your friends think of this book!

Community Reviews

5 stars
0 (0%)
4 stars
0 (0%)
3 stars
0 (0%)
2 stars
0 (0%)
1 star
0 (0%)
No one has reviewed this book yet.

Can't find what you're looking for?

Get help and learn more about the design.