Jump to ratings and reviews
Rate this book

An introduction to symmetric functions and their combinatorics

Rate this book
This book is a reader-friendly introduction to the theory of symmetric functions, and it includes fundamental topics such as the monomial, elementary, homogeneous, and Schur function bases; the skew Schur functions; the Jacobi Trudi identities; the involution ; the Hall inner product; Cauchy's formula; the RSK correspondence and how to implement it with both insertion and growth diagrams; the Pieri rules; the Murnaghan Nakayama rule; Knuth equivalence; jeu de taquin; and the Littlewood Richardson rule. The book also includes glimpses of recent developments and active areas of research, including Grothendieck polynomials, dual stable Grothendieck polynomials, Stanley's chromatic symmetric function, and Stanley's chromatic tree conjecture. Written in a conversational style, the book contains many motivating and illustrative examples. Whenever possible it takes a combinatorial approach, using bijections, involutions, and combinatorial ideas to prove algebraic results. The prerequisites for this book are minimal familiarity with linear algebra, partitions, and generating functions is all one needs to get started. This makes the book accessible to a wide array of undergraduates interested in combinatorics.

342 pages, Paperback

Published January 1, 2019

1 person is currently reading
2 people want to read

About the author

Ratings & Reviews

What do you think?
Rate this book

Friends & Following

Create a free account to discover what your friends think of this book!

Community Reviews

5 stars
1 (100%)
4 stars
0 (0%)
3 stars
0 (0%)
2 stars
0 (0%)
1 star
0 (0%)
No one has reviewed this book yet.

Can't find what you're looking for?

Get help and learn more about the design.