Jump to ratings and reviews
Rate this book

Machine Learning for Physics and Astronomy

Rate this book
A hands-on introduction to machine learning and its applications to the physical sciences

As the size and complexity of data continue to grow exponentially across the physical sciences, machine learning is helping scientists to sift through and analyze this information while driving breathtaking advances in quantum physics, astronomy, cosmology, and beyond. This incisive textbook covers the basics of building, diagnosing, optimizing, and deploying machine learning methods to solve research problems in physics and astronomy, with an emphasis on critical thinking and the scientific method. Using a hands-on approach to learning, Machine Learning for Physics and Astronomy draws on real-world, publicly available data as well as examples taken directly from the frontiers of research, from identifying galaxy morphology from images to identifying the signature of standard model particles in simulations at the Large Hadron Collider.

280 pages, Paperback

Published August 15, 2023

2 people are currently reading
25 people want to read

About the author

Ratings & Reviews

What do you think?
Rate this book

Friends & Following

Create a free account to discover what your friends think of this book!

Community Reviews

5 stars
1 (50%)
4 stars
1 (50%)
3 stars
0 (0%)
2 stars
0 (0%)
1 star
0 (0%)
Displaying 1 of 1 review
Profile Image for Jessada Karnjana.
592 reviews9 followers
September 2, 2024
เนื้อหาไม่ลึกมาก (derive บางสมการผิด หรืออาจจะเป็น typos) เล่มนี้เป็นบทนำที่ดีเล่มหนึ่งสำหรับ ML โดยจุดที่เราชอบเป็นพิเศษคือ สามารถใช้ worked examples ทางฟิสิกส์และดาราศาสตร์ในเล่ม เอามาเล่นกับเด็ก ๆ เป็นการเปลี่ยนบรรยากาศ และสนุกดี
Displaying 1 of 1 review

Can't find what you're looking for?

Get help and learn more about the design.