Jump to ratings and reviews
Rate this book

Open Quantum Systems and Feynman Integrals

Rate this book
1 / Quantum Kinematics of Unstable Systems.- 1.1. Is There Anything Left to Study on Unstable Systems?.- 1.2. Basic Notions.- 1.3. Small-Time Behaviour.- 1.4. The Inverse Decay Problem.- 1.5. Semiboundedness and Other Properties of the Energy Spectrum.- 1.6. Bounded-Energy Approximation.- Notes to Chapter 1.- 2 / Repeated Measurements on Unstable Systems.- 2.1. Decay Law in the Presence of Repeated Measurements.- 2.2. Periodically Structured Measuring Devices.- 2.3. A Charged Kaons in a Bubble Chamber.- 2.4. Limit of Continual Observation and the 'Zeno's Paradox'.- Notes to Chapter 2.- 3 / Dynamics and Symmetries.- 3.1. Poles of the Reduced Resolvent.- 3.2. Friedrichs Model.- 3.3. Bounded Perturbations of Embedded Eigenvalues.- 3.4. Symmetries and Broken Symmetries.- 3.5. Relativistic Invariance.- Notes to Chapter 3.- 4 / Pseudo-Hamiltonians.- 4.1. Pseudo-Hamiltonians and Quasi-Hamiltonians.- 4.2. Maximal Dissipative Operators.- 4.3. Schrödinger Pseudo-Hamiltonians.- 4.4. The Optical Approximation.- 4.5. Non-unitary Scattering Theory.- Notes to Chapter 4.- 5 / Feynman Path Integrals.- 5.1. The Integrals that are not a Brief Survey.- 5.2. Feynman Maps on the Algebra ?(?).- 5.3. Hilbert Spaces of Paths.- 5.4. Polygonal-Path Approximations.- 5.5. Product Formulae.- 5.6. More about Other F-Integral Theories.- Notes to Chapter 5.- 6 / Application to Schrödinger Pseudo-Hamiltonians.- 6.1. Feynman-Cameron-Itô Formu la.- 6.2. The Damped Harmonic Oscillator.- 6.3. The 'Feynman Paths'.- Notes to Chapter 6.- Selected Problems.

380 pages, Paperback

First published November 30, 1984

4 people want to read

About the author

Pavel Exner

18 books

Ratings & Reviews

What do you think?
Rate this book

Friends & Following

Create a free account to discover what your friends think of this book!

Community Reviews

5 stars
0 (0%)
4 stars
0 (0%)
3 stars
0 (0%)
2 stars
0 (0%)
1 star
0 (0%)
No one has reviewed this book yet.

Can't find what you're looking for?

Get help and learn more about the design.