1. Introduction and Historical Survey Part I. Linear Independence of Logarithms of Algebraic Numbers 2. Transcendence Proofs in One Variable 3. Heights of Algebraic Numbers 4. The Criterion of Schneider-Lang 5. Zero Estimate 6. Linear Independence of Logarithms of Algebraic Numbers Part II. Measures of Linear Independence 7. A First Measure with a Simple Proof 8. Zero Estimate (Continued), by Damien ROY 9. Refined Measure III. Multiplicities in Higher Dimension 10. Multiplicity Estimates, by Damien ROY 11. Interpolation Determinants with One Derivative 12. On Baker's Method Part IV. The Linear Subgroup Theorem 13. Points Whose Coordinates are Logarithms of Algebraic Numbers 14. Lower Bounds for the Rank of Matrices Part V. Simultaneous Approximation of Values of the Exponential Function in Several Variables 15. A Quantitative Version of the Linear Subgroup Theorem 16. Applications to Diophantine Approximation 17. Algebraic Independence References