Jump to ratings and reviews
Rate this book

Geometry and Probability in Banach Spaces

Rate this book
Type and cotype for a Banach space p-summing maps.- Pietsch factorization theorem.- Completely summing maps. Hilbert-Schmidt and nuclear maps.- p-integral maps.- Completely summing Six equivalent properties. p-Radonifying maps.- Radonification Theorem.- p-Gauss laws.- Proof of the Pietsch conjecture.- p-Pietsch spaces. Brownian motion.- More on cylindrical measures and stochastic processes.- Kahane inequality. The case of Lp. Z-type.- Kahane contraction principle. p-Gauss type the Gauss type interval is open.- q-factorization, Maurey's theorem Grothendieck factorization theorem.- Equivalent properties, summing vs. factorization.- Non-existence of (2+?)-Pietsch spaces, Ultrapowers.- The Pietsch interval. The weakest non-trivial superproperty. Cotypes, Rademacher vs. Gauss.- Gauss-summing maps. Completion of grothendieck factorization theorem. TLC and ILL.- Super-reflexive spaces. Modulus of convexity, q-convexity "trees" and Kelly-Chatteryji Theorem Enflo theorem. Modulus of smoothness, p-smoothness. Properties equivalent to super-reflexivity.- Martingale type and cotype. Results of Pisier. Twelve properties equivalent to super-reflexivity. Type for subspaces of Lp (Rosenthal Theorem).

120 pages, Paperback

First published December 31, 1981

1 person want to read

About the author

Laurent Schwartz

74 books9 followers

Ratings & Reviews

What do you think?
Rate this book

Friends & Following

Create a free account to discover what your friends think of this book!

Community Reviews

5 stars
1 (50%)
4 stars
1 (50%)
3 stars
0 (0%)
2 stars
0 (0%)
1 star
0 (0%)
No one has reviewed this book yet.

Can't find what you're looking for?

Get help and learn more about the design.