Jump to ratings and reviews
Rate this book

Elementary Number Theory

Rate this book
1. Divisibility.- 1.1 Divisors.- 1.2 Bezout's identity.- 1.3 Least common multiples.- 1.4 Linear Diophantine equations.- 1.5 Supplementary exercises.- 2. Prime Numbers.- 2.1 Prime numbers and prime-power factorisations.- 2.2 Distribution of primes.- 2.3 Fermat and Mersenne primes.- 2.4 Primality-testing and factorisation.- 2.5 Supplementary exercises.- 3. Congruences.- 3.1 Modular arithmetic.- 3.2 Linear congruences.- 3.3 Simultaneous linear congruences.- 3.4 Simultaneous non-linear congruences.- 3.5 An extension of the Chinese Remainder Theorem.- 3.6 Supplementary exercises.- 4. Congruences with a Prime-power Modulus.- 4.1 The arithmetic of ?p.- 4.2 Pseudoprimes and Carmichael numbers.- 4.3 Solving congruences mod (pe).- 4.4 Supplementary exercises.- 5. Euler's Function.- 5.1 Units.- 5.2 Euler's function.- 5.3 Applications of Euler's function.- 5.4 Supplementary exercises.- 6. The Group of Units.- 6.1 The group Un.- 6.2 Primitive roots.- 6.3 The group Une, where p is an odd prime.- 6.4 The group U2e.- 6.5 The existence of primitive roots.- 6.6 Applications of primitive roots.- 6.7 The algebraic structure of Un.- 6.8 The universal exponent.- 6.9 Supplementary exercises.- 7. Quadratic Residues.- 7.1 Quadratic congruences.- 7.2 The group of quadratic residues.- 7.3 The Legendre symbol.- 7.4 Quadratic reciprocity.- 7.5 Quadratic residues for prime-power moduli.- 7.6 Quadratic residues for arbitrary moduli.- 7.7 Supplementary exercises.- 8. Arithmetic Functions.- 8.1 Definition and examples.- 8.2 Perfect numbers.- 8.3 The Mobius Inversion Formula.- 8.4 An application of the Mobius Inversion Formula.- 8.5 Properties of the Mobius function.- 8.6 The Dirichlet product.- 8.7 Supplementary exercises.- 9. The Riemann Zeta Function.- 9.1 Historical background.- 9.2 Convergence.- 9.3 Applications to prime numbers.- 9.4 Random integers.- 9.5 Evaluating ?(2).- 9.6 Evaluating ?(2k).- 9.7 Dirichlet series.- 9.8 Euler products.- 9.9 Complex variables.- 9.10 Supplementary exercises.- 10. Sums of Squares.- 10.1 Sums of two squares.- 10.2 The Gaussian integers.- 10.3 Sums of three squares.- 10.4 Sums of four squares.- 10.5 Digression on quaternions.- 10.6 Minkowski's Theorem.- 10.7 Supplementary exercises.- 11. Fermat's Last Theorem.- 11.1 The problem.- 11.2 Pythagoras's Theorem.- 11.3 Pythagorean triples.- 11.4 Isosceles triangles and irrationality.- 11.5 The classification of Pythagorean triples.- 11.6 Fermat.- 11.7 The case n = 4.- 11.8 Odd prime exponents.- 11.9 Lame and Kummer.- 11.10 Modern developments.- 11.11 Further reading.- Solutions to Exercises.- Index of symbols.- Index of names.

316 pages, Paperback

First published July 31, 1998

32 people are currently reading
165 people want to read

About the author

Gareth A. Jones

15 books1 follower

Ratings & Reviews

What do you think?
Rate this book

Friends & Following

Create a free account to discover what your friends think of this book!

Community Reviews

5 stars
19 (28%)
4 stars
20 (29%)
3 stars
25 (37%)
2 stars
2 (2%)
1 star
1 (1%)
Displaying 1 - 5 of 5 reviews
Profile Image for Randy.
112 reviews
December 29, 2009
A college level math summary... best approached after digesting a number theory textbook... but a good way to brush up.
Profile Image for Emily.
342 reviews35 followers
March 17, 2013
Terrible... there are some serious typos (multiplication symbols that look like periods or decimal points!) and this book is NOT reader friendly - it's almost as if the writers expect you to already know Number Theory. I will not finish reading this and will only be using it for assigned problems from here on out.
Displaying 1 - 5 of 5 reviews

Can't find what you're looking for?

Get help and learn more about the design.