Jump to ratings and reviews
Rate this book
Rate this book
I A Review of Linear Algebra.- I.1 Vector Spaces and Inner Product Spaces.- I.2 Linear Operators and Matrices.- I.3 Direct Sums.- I.4 Tensor Products.- I.5 Symmetry Classes.- I.6 Problems.- I.7 Notes and References.- II Majorisation and Doubly Stochastic Matrices.- II.1 Basic Notions.- II. 2 Birkhoff's Theorem.- II.3 Convex and Monotone Functions.- II.4 Binary Algebraic Operations and Majorisation.- II.5 Problems.- II.6 Notes and References.- III Variational Principles for Eigenvalues.- III.1 The Minimax Principle for Eigenvalues.- III.2 Weyl's Inequalities.- III.3 Wielandt's Minimax Principle.- III.4 Lidskii's Theorems.- III. 5 Eigenvalues of Real Parts and Singular Values.- III.6 Problems.- III.7 Notes and References.- IV Symmetric Norms.- IV.l Norms on ?n.- IV.2 Unitarily Invariant Norms on Operators on ?n.- IV.3 Lidskii's Theorem (Third Proof).- IV.4 Weakly Unitarily Invariant Norms.- IV.5 Problems.- IV.6 Notes and References.- V Operator Monotone and Operator Convex Functions.- V.1 Definitions and Simple Examples.- V.2 Some Characterisations.- V.3 Smoothness Properties.- V.4 Loewner's Theorems.- V.5 Problems.- V.6 Notes and References.- VI Spectral Variation of Normal Matrices.- VI. 1 Continuity of Roots of Polynomials.- VI. 2 Hermitian and Skew-Hermitian Matrices.- VI. 3 Estimates in the Operator Norm.- VI. 4 Estimates in the Frobenius Norm.- VI. 5 Geometry and Spectral the Operator Norm.- VI. 6 Geometry and Spectral wui Norms.- VI. 7 Some Inequalities for the Determinant.- VI. 8 Problems.- VI. 9 Notes and References.- VII Perturbation of Spectral Subspaces of Normal Matrices.- VII. 1 Pairs of Subspaces.- VII. 2 The Equation AX - XB = Y.- VII. 3 Perturbation of Eigenspaces.- VII. 4 A Perturbation Bound for Eigenvalues.- VII. 5 Perturbation of the Polar Factors.- VII. 6 Evaluating the (Fourier) constants.- VII. 7 Problems.- VII. 8 Notes and References.- VIII Spectral Variation of Nonnormal Matrices.- VIII. 1 General Spectral Variation Bounds.- VIII. 4 Matrices with Real Eigenvalues.- VIII. 5 Eigenvalues with Symmetries.- VIII. 6 Problems.- VIII. 7 Notes and References.- IX A Selection of Matrix Inequalities.- IX. 1 Some Basic Lemmas.- IX. 2 Products of Positive Matrices.- IX. 3 Inequalities for the Exponential Function.- IX. 4 Arithmetic-Geometric Mean Inequalities.- IX. 5 Schwarz Inequalities.- IX. 6 The Lieb Concavity Theorem.- IX. 7 Operator Approximation.- IX. 8 Problems.- IX. 9 Notes and References.- X Perturbation of Matrix Functions.- X. 1 Operator Monotone Functions.- X. 2 The Absolute Value.- X. 3 Local Perturbation Bounds.- X. 4 Differential Calculus.- X. 5 Problems.- X. 6 Notes and References.- References.

364 pages, Paperback

First published November 15, 1996

2 people are currently reading
109 people want to read

About the author

Rajendra Bhatia

23 books2 followers

Ratings & Reviews

What do you think?
Rate this book

Friends & Following

Create a free account to discover what your friends think of this book!

Community Reviews

5 stars
7 (30%)
4 stars
8 (34%)
3 stars
8 (34%)
2 stars
0 (0%)
1 star
0 (0%)
Displaying 1 of 1 review
Profile Image for Michael Nielsen.
Author 12 books1,559 followers
November 26, 2023
The best book about majorization, double stochasticity, and operator monotonicity you'll ever read! Or not. Your choice, but I tell you, if you don't read it you're missing out...
Displaying 1 of 1 review

Can't find what you're looking for?

Get help and learn more about the design.