Jump to ratings and reviews
Rate this book

Python Scikit-Learn for Beginners: Scikit-Learn Specialization for Data Scientist

Rate this book
Python for Data Scientists — Scikit-Learn Specialization
Scikit-Learn, also known as Sklearn, is a free, open-source machine learning (ML) library used for the Python language. In February 2010, this library was first made public. And in less than three years, it became one of the most popular machine learning libraries on Github.Scikit-learn is the best place to start for access to easy-to-use, top-notch implementations of popular algorithms. This library speeds up the development of ML models.The main features of the Scikit-learn library are regression, classification, and clustering algorithms (random forests, K-means, gradient boosting, DBSCAN, AND support vector machines). The Scikit-learn library also integrates well with other Python libraries, such as NumPy, Pandas, IPython, SciPy, Sympy, and Matplotlib, to fulfill different tasks. Python for Data Scikit-Learn Specialization presents you with a hands-on, simple approach to learn Scikit-learn fast.
How Is This Book Different?
Most Python books assume you know how to code using Pandas, NumPy, and Matplotlib. But this book does not. The author spends a lot of time teaching you how actually write the simplest codes in Python to achieve machine learning models.In-depth coverage of the Scikit-learn library starts from the third chapter itself. Jumping straight to Scikit-learn makes it easy for you to follow along. The other advantage is Jupyter Notebook is used to write and explain the code right through this book.You can access the datasets used in this book easily by downloading them at runtime. You can also access them through the Datasets folder in the SharePoint and GitHub repositories.You also get to work on three hands-on The scripts, graphs, and images in the book are clear and provide easy-to-understand visuals to the text description. If you’re new to data science, you will find this book a great option for self-study. Overall, you can count on this learning by doing book to help you accomplish your data science career goals faster.
The topics covered

342 pages, Paperback

Published March 28, 2021

9 people are currently reading
1 person want to read

About the author

AI Publishing

403 books1 follower

Ratings & Reviews

What do you think?
Rate this book

Friends & Following

Create a free account to discover what your friends think of this book!

Community Reviews

5 stars
0 (0%)
4 stars
0 (0%)
3 stars
0 (0%)
2 stars
0 (0%)
1 star
0 (0%)
No one has reviewed this book yet.

Can't find what you're looking for?

Get help and learn more about the design.