Jump to ratings and reviews
Rate this book

Applied Machine Learning

Rate this book
1. Learning to Classify.- 2. SVM's and Random Forests.- 3. A Little Learning Theory.- 4. High-dimensional Data.- 5. Principal Component Analysis.- 6. Low Rank Approximations.- 7. Canonical Correlation Analysis.- 8. Clustering.- 9. Clustering using Probability Models.- 10. Regression.- 11. Choosing and Managing Models.- 12. Boosting.- 13. Hidden Markov Models.- 14. Learning Sequence Models Discriminatively.- 15. Mean Field Inference.- 16. Simple Neural Networks.- 17. Simple Image Classifiers.- 18. Classifying Images and Detecting Objects.- 19. Small Codes for Big Signals.- Index.

518 pages, Paperback

Published July 17, 2019

2 people are currently reading
4 people want to read

About the author

David Forsyth

40 books
Librarian Note: There is more than one author by this name in the Goodreads database.

Ratings & Reviews

What do you think?
Rate this book

Friends & Following

Create a free account to discover what your friends think of this book!

Community Reviews

5 stars
0 (0%)
4 stars
1 (33%)
3 stars
2 (66%)
2 stars
0 (0%)
1 star
0 (0%)
No one has reviewed this book yet.

Can't find what you're looking for?

Get help and learn more about the design.