Jump to ratings and reviews
Rate this book

Lie Groups: Quantization

Rate this book
A group is a collection of symmetries of any object, and each group is the symmetries of some object. Lie groups are groups whose elements are organized continuously and smoothly, making them differentiable manifolds. This is in contrast to discrete groups, where the elements are separated. A Lie group is a continuous group whose elements are described by several real parameters. As such, they provide a natural model for the concept of continuous symmetry, such as rotational symmetry in three dimensions. The real motivation for introducing Lie groups was to model the continuous symmetries of differential equations. They are extensively used in various parts of contemporary mathematics and physics. Lie groups also play a huge role in modern geometry on many different levels. This book outlines the processes and applications of Lie groups in detail. It covers some existent theories and innovative concepts revolving around this field. With state-of-the-art inputs by acclaimed experts of this field, this book targets students and professionals.

280 pages, Hardcover

Published March 1, 2022

About the author

Thomas Fleming

101 books24 followers
Thomas Fleming is the editor of Chronicles: A Magazine of American Culture and the president of The Rockford Institute in Rockford, Illinois.

Ratings & Reviews

What do you think?
Rate this book

Friends & Following

Create a free account to discover what your friends think of this book!

Community Reviews

5 stars
0 (0%)
4 stars
1 (100%)
3 stars
0 (0%)
2 stars
0 (0%)
1 star
0 (0%)
No one has reviewed this book yet.

Can't find what you're looking for?

Get help and learn more about the design.