Jump to ratings and reviews
Rate this book

Micrographia: Some Physiological Descriptions of Minute Bodieslasses with Observations and Inquiries Thereupon

Rate this book
Micrographia is a historic book by Robert Hooke, detailing the then thirty-year-old Hooke's observations through various lenses. Published in September 1665, the first major publication of the Royal Society, it was the first scientific best-seller, inspiring a wide public interest in the new science of microscopy.We will begin these our Inquiries therefore with the Observations of Bodies of the most simple nature first, and so gradually proceed to those of a more compounded one. In prosecution of which method, we shall begin with a Physical point; of which kind the Point of a Needle is commonly reckon'd for one; and is indeed, for the most part, made so sharp, that the naked eye cannot distinguish any parts of It very easily pierces, and makes its way through all kind of bodies softer then it But if view'd with a very good Microscope, we may find that the top of a Needle (though as to the sense very sharp) appears a broad, blunt, and very irregular end; not resembling a Cone, as is imagin'd, but onely a piece of a tapering body, with a great part of the top remov'd, or deficient. The Points of Pins are yet more blunt, and the Points of the most curious Mathematical Instruments do very seldome arrive at so great a sharpness; how much therefore can be built upon demonstrations made onely by the productions of the Ruler and Compasses, he will be better able to consider that shall but view those points and lines with a Microscope.

483 pages, Paperback

Published September 7, 2020

About the author

Robert Hooke

96 books21 followers
Robert Hooke FRS (/hʊk/; 28 July [O.S. 18 July] 1635 – 3 March 1703) was an English natural philosopher, architect and polymath.

His adult life comprised three distinct periods: as a scientific inquirer lacking money; achieving great wealth and standing through his reputation for hard work and scrupulous honesty following the great fire of 1666, but eventually becoming ill and party to jealous intellectual disputes. These issues may have contributed to his relative historical obscurity.

He was at one time simultaneously the curator of experiments of the Royal Society and a member of its council, Gresham Professor of Geometry and a Surveyor to the City of London after the Great Fire of London, in which capacity he appears to have performed more than half of all the surveys after the fire. He was also an important architect of his time – though few of his buildings now survive and some of those are generally misattributed – and was instrumental in devising a set of planning controls for London whose influence remains today. Allan Chapman has characterised him as "England's Leonardo".

Robert Gunther's Early Science in Oxford, a history of science in Oxford during the Protectorate, Restoration and Age of Enlightenment, devotes five of its fourteen volumes to Hooke.

Hooke studied at Wadham College during the Protectorate where he became one of a tightly knit group of ardent Royalists led by John Wilkins. Here he was employed as an assistant to Thomas Willis and to Robert Boyle, for whom he built the vacuum pumps used in Boyle's gas law experiments. He built some of the earliest Gregorian telescopes and observed the rotations of Mars and Jupiter. In 1665 he inspired the use of microscopes for scientific exploration with his book, Micrographia. Based on his microscopic observations of fossils, Hooke was an early proponent of biological evolution. He investigated the phenomenon of refraction, deducing the wave theory of light, and was the first to suggest that matter expands when heated and that air is made of small particles separated by relatively large distances. He performed pioneering work in the field of surveying and map-making and was involved in the work that led to the first modern plan-form map, though his plan for London on a grid system was rejected in favour of rebuilding along the existing routes. He also came near to an experimental proof that gravity follows an inverse square law, and hypothesised that such a relation governs the motions of the planets, an idea which was subsequently developed by Newton. Much of Hooke's scientific work was conducted in his capacity as curator of experiments of the Royal Society, a post he held from 1662, or as part of the household of Robert Boyle.

Ratings & Reviews

What do you think?
Rate this book

Friends & Following

Create a free account to discover what your friends think of this book!

Community Reviews

5 stars
0 (0%)
4 stars
0 (0%)
3 stars
0 (0%)
2 stars
0 (0%)
1 star
0 (0%)
No one has reviewed this book yet.

Can't find what you're looking for?

Get help and learn more about the design.