Basics. - The R environment. - Probability and statistics. - Descriptive statistics and graphics. - One and two sample tests. - Regression and correlation. - ANOVA and Kruskal-Wallis. - Tabular data. - Power and the computation of sample size. - Advanced data handling. - Multiple regression. - Linear models. - Logistic regression. - Survival analysis. - Rates and Poisson regression. - Nonlinear curve-fitting. - Obtaining and installing R and the ISwR package. - Data sets in the ISwR package. - Compendium. - Answers to exercises. - Index.