Goodreads helps you follow your favorite authors. Be the first to learn about new releases!
Start by following John M. Archibald.
Showing 1-3 of 3
“The era of digital DNA (if there ends up being one) is still a long way off. Million-fold improvements in the scale and speed of DNA synthesis are needed if it is to become a viable solution to the world’s growing data storage problem. But it is worth considering that the cost of DNA sequencing has dropped two-million-fold since 2003, a pace that exceeds Moore’s Law. And consider this: at a theoretical maximum density of 2 bits per nucleotide, all of the world’s data could be stored in a mere kilogram of DNA. That’s a lot of DNA—it’s also a lot of data! It is not difficult to envision a future in which the world’s data archiving centres are full of DNA chips instead of computer hard drives.”
― Genomics: A Very Short Introduction
― Genomics: A Very Short Introduction
“As strange as it sounds, it is no longer possible to determine how many human genomes have been sequenced. At present the strategy of choice is whole-genome re-sequencing (Chapter 3) whereby next-generation sequence data are mapped onto a reference genome. The results have been breathtaking. The recently concluded (and aptly named) 1000 Genomes Project Consortium catalogued ~85 million SNPs, 3.6 million short insertions/deletions, and 60,000 larger structural variants in a global sampling of human genetic diversity. These data are catalysing research in expected and unexpected ways. Beyond providing a rich source of data for GWA-type studies focused on disease, scientists are also using the 1000 Genomes Project data to learn about our basic biology, something that proved surprisingly difficult when only a pair of genomes was available. For example, a recent GWAS taking advantage of the 1000 Genomes Project data identified ten genes associated with kidney development and function, genes that had previously not been linked to this critical aspect of human physiology. In 2016, Craig Venter’s team reported the sequencing of 10,545 human genomes. Beyond the impressively low cost (US$1,000–2,000 per genome) and high quality (30–40× coverage), the study was significant in hinting at the depths of human genome diversity yet to be discovered. More than 150 million genetic variants were identified in both coding and non-coding regions of the genome; each sequenced genome had on average ~8,600 novel variants. Furthermore, each new genome was found to contain 0.7 Mbp of sequence that is not contained in the reference genome. This underscores the need for methods development in the area of structure variation detection in personal genome data. Overall, however, the authors concluded that ‘the data generated by deep genome sequencing is of the quality necessary for clinical use’.”
― Genomics: A Very Short Introduction
― Genomics: A Very Short Introduction
“Genomics has transformed the biological sciences. From epidemiology and medicine to evolution and forensics, the ability to determine an organism’s complete genetic makeup has changed the way science is done and the questions that can be asked of it. Far and away the most celebrated achievement of genomics is the Human Genome Project, a technologically challenging endeavour that took thousands of scientists around the world thirteen years and ~US$3 billion to complete. In 2000, American President William Clinton referred to the resulting genome sequence as ‘the most important, most wondrous map ever produced by humankind.’ Important though it was, this ‘map’ was a low-resolution first pass—a beginning not an endpoint. As of this writing, thousands of human genomes have been sequenced, the primary goals being to better understand our biology in health and disease, and to ‘personalize’ medicine. Sequencing a human genome now takes only a few days and costs as little as US$1,000. The genomes of simple bacteria and viruses can be sequenced in a matter of hours on a device that fits in the palm of your hand. The information is being used in ways unimaginable only a few years ago.”
― Genomics: A Very Short Introduction
― Genomics: A Very Short Introduction



