Goodreads helps you follow your favorite authors. Be the first to learn about new releases!
Start by following Harold Abelson.
Showing 1-11 of 11
“Programs must be written for people to read, and only incidentally for machines to execute.”
― Structure and Interpretation of Computer Programs
― Structure and Interpretation of Computer Programs
“Computational processes are abstract beings that inhabit computers. As they evolve, processes manipulate other abstract things called data. The evolution of a process is directed by a pattern of rules called a program. People create programs to direct processes. In effect, we conjure the spirits of the computer with our spells.”
― Structure and Interpretation of Computer Programs
― Structure and Interpretation of Computer Programs
“Underlying our approach to this subject is our conviction that "computer science" is not a science and that its significance has little to do with computers. The computer revolution is a revolution in the way we think and in the way we express what we think. The essence of this change is the emergence of what might best be called procedural epistemology—the study of the structure of knowledge from an imperative point of view, as opposed to the more declarative point of view taken by classical mathematical subjects. Mathematics provides a framework for dealing precisely with notions of "what is". Computation provides a framework for dealing precisely with notions of "how to".”
― Structure and Interpretation of Computer Programs
― Structure and Interpretation of Computer Programs
“A powerful programming language is more than just a means for instructing a computer to perform tasks. The language also serves as a framework within which we organize our ideas about processes. Thus, when we describe a language, we should pay particular attention to the means that the language provides for combining simple ideas to form more complex ideas. Every powerful language has three mechanisms for accomplishing this:
- primitive expressions, which represent the simplest entities the language is concerned with,
- means of combination, by which compound elements are built from simpler ones, and
- means of abstraction, by which compound elements can be named and manipulated as units.”
― Structure and Interpretation of Computer Programs
- primitive expressions, which represent the simplest entities the language is concerned with,
- means of combination, by which compound elements are built from simpler ones, and
- means of abstraction, by which compound elements can be named and manipulated as units.”
― Structure and Interpretation of Computer Programs
“We are about to study the idea of a computational process. Computational processes are abstract beings that inhabit computers. As they evolve, processes manipulate other abstract things called data. The evolution of a process is directed by a pattern of rules called a program. People create programs to direct processes. In effect, we conjure the spirits of the computer with our spells.
A computational process is indeed much like a sorcerer's idea of a spirit. It cannot be seen or touched. It is not composed of matter at all. However, it is very real. It can perform intellectual work. It can answer questions. It can affect the world by disbursing money at a bank or by controlling a robot arm in a factory. The programs we use to conjure processes are like a sorcerer's spells. They are carefully composed from symbolic expressions in arcane and esoteric programming languages that prescribe the tasks we want our processes to perform.
A computational process, in a correctly working computer, executes programs precisely and accurately. Thus, like the sorcerer's apprentice, novice programmers must learn to understand and to anticipate the consequences of their conjuring. Even small errors (usually called bugs or glitches) in programs can have complex and unanticipated consequences.”
― Structure and Interpretation of Computer Programs
A computational process is indeed much like a sorcerer's idea of a spirit. It cannot be seen or touched. It is not composed of matter at all. However, it is very real. It can perform intellectual work. It can answer questions. It can affect the world by disbursing money at a bank or by controlling a robot arm in a factory. The programs we use to conjure processes are like a sorcerer's spells. They are carefully composed from symbolic expressions in arcane and esoteric programming languages that prescribe the tasks we want our processes to perform.
A computational process, in a correctly working computer, executes programs precisely and accurately. Thus, like the sorcerer's apprentice, novice programmers must learn to understand and to anticipate the consequences of their conjuring. Even small errors (usually called bugs or glitches) in programs can have complex and unanticipated consequences.”
― Structure and Interpretation of Computer Programs
“In testing primality of very large numbers chosen at random, the chance of stumbling upon a value that fools the Fermat test is less than the chance that cosmic radiation will cause the computer to make an error in carrying out a "correct" algorithm. Considering an algorithm to be inadequate for the first reason but not for the second illustrates the difference between mathematics and engineering.”
― Structure and Interpretation of Computer Programs
― Structure and Interpretation of Computer Programs
“It is possible, indeed important, to be able to separate these two notions—to create procedures without naming them, and to give names to procedures that have already been created.”
― Structure and Interpretation of Computer Programs
― Structure and Interpretation of Computer Programs
“Pascal is for building pyramids -- imposing, breathtaking, static structures built by armies pushing heavy blocks into place. Lisp is for building organisms -- imposing, breathtaking, dynamic structures built by squads fitting fluctuating myriads of simpler organisms into place.”
―
―
“We conjure the spirits of the computer with our spells.”
― Structure and Interpretation of Computer Programs
― Structure and Interpretation of Computer Programs
“We conjure the spirits of the computer with our spells”
― Structure and Interpretation of Computer Programs
― Structure and Interpretation of Computer Programs
“[...] we conjure the spirits of the computer with our spells.”
― Structure and Interpretation of Computer Programs
― Structure and Interpretation of Computer Programs




