“Vibration always worried Libchaber. Experiments, like real nonlinear systems, existed against a constant background of noise. Noise hampered measurement and corrupted data. In sensitive flows—and Libchaber’s would be as sensitive as he could make it—noise might sharply perturb a nonlinear flow, knocking it from one kind of behavior into another. But nonlinearity can stabilize a system as well as destabilize it. Nonlinear feedback regulates motion, making it more robust. In a linear system, a perturbation has a constant effect. In the presence of nonlinearity, a perturbation can feed on itself until it dies away and the system returns automatically to a stable state. Libchaber believed that biological systems used their nonlinearity as a defense against noise. The transfer of energy by proteins, the wave motion of the heart’s electricity, the nervous system—all these kept their versatility in a noisy world. Libchaber hoped that whatever structure underlay fluid flow would prove robust enough for his experiment to detect.”
―
James Gleick,
Chaos: Making a New Science